
ADDING BOUNDS WHILE PRESERVING CONGRUENCES FOR
LATTICES

PIERRE GILLIBERT

Abstract. A lattice is congruence-bounded if its largest congruence is finitely

generated. We study the following two statements for some varieties V of
lattices.

(Q1) For every congruence-bounded lattice K in V there is a bounded lattice

L ∈ V such that K and L have isomorphic congruence lattices.
(Q2) Every congruence-bounded lattice in V has a bounded congruence-pre-

serving extension in V.

Given a finitely generated variety V of lattices, we prove that (Q2) holds
only in the trivial case, that is if each congruence-bounded lattice in V is

bounded. For example in N5, the variety generated by the five-element non-

modular lattice, every congruence-bounded lattice is bounded.
Let n ≥ 3. The statement (Q2) fails for the variety Mn generated by the

lattice of length 2 with n atoms, however (Q1) holds and the construction can
be made functorial.

1. Introduction

The set ConL of all congruences of a lattice L forms an algebraic lattice for
the inclusion. We denote by ΘL(x, y) the smallest congruence that identifies x
and y, for all x, y in L. A congruence α of L is principal if there are x, y in L
such that α = Θ(x, y). A finitely generated congruence is a finite join of principal
congruences. The set Conc L of all finitely generated congruences of L forms a
distributive (∨, 0)-semilattice for the inclusion (cf. [2]).

A lattice is congruence-bounded if its largest congruence is compact (or equiv-
alently finitely generated). Every bounded lattice is congruence-bounded but the
converse does not hold in general. For example consider the lattice M3 on Figure 1,
denote by L the set of all sequences (an)n<ω of elements of M3 such that either
{n < ω | an 6= 0} is finite or {n < ω | an 6= x} is finite, endowed with the com-
ponentwise ordering. It is easy to check that L is a lattice. Viewing 0 and x as
constant sequences, ΘL(0, x) = L × L is the largest congruence of L. However L
has no largest element.

We know from [8] that there are distributive (∨, 0, 1)-semilattices which are not
isomorphic to the congruence lattice of any lattice. However many problems about
congruence lattices of lattices are still open. The problem whether for each lattice K
there exists a lattice L with 0 such that ConcK ∼= Conc L is open (see [6, Problem
2] or the discussion before [7, Theorem 3.5]).
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2 P. GILLIBERT

The study of the following questions might be a good start to solve this prob-
lem. Let S be a (∨, 0, 1)-semilattice, we assume that there exists a lattice K with
ConcK ∼= S. Is it possible to find a bounded lattice L with Conc L ∼= S? Can we
choose L to be a congruence-preserving extension of K?

We do not know the answers to those questions. However we study the following
related questions for small varieties V of lattices.

(Q1) For all K ∈ Vb there is L ∈ V0,1 such that K and L have isomorphic
congruence lattices.

(Q2) Every K ∈ Vb has a congruence-preserving extension in V0,1.
We prove in Corollary 3.8 that if each subdirectly irreducible lattice in V has no

infinite chain, then (Q2) holds only in the trivial case, that is if Vb = V0,1.
Let n ≥ 3, denote by Mn the variety of lattices generated by Mn the lattice on

Figure 2. We construct a functor Ψ: Mb
n →M0,1

n , preserving colimits and such that
Conc ◦Ψ is naturally equivalent to Conc. In particular (Q1) holds for Mn.

2. Basic Concepts

We denote by 0 (resp., 1) the least (resp. largest) element of a poset if it exists.
We denote by 2 = {0, 1} the two-element lattice. We denote by 3 the three-element
lattice. Given an algebra A, we denote by 0A (resp., 1A) the identity congruence
of A (resp., the largest congruence of A).

Let V be a variety of lattices, we denote by V0 (resp., V0,1) the class of all lattices
in V with 0 (resp., 0 and 1). We also consider V0 (resp., V0,1) as subcategories of V

with morphisms preserving 0 (resp., 0 and 1).
Given a morphism f : K → L of lattices, we denote by Con f : ConA→ ConB

the map that sends a congruence α of K to the congruence of L generated by
{(f(x), f(y) | (x, y) ∈ α}. We denote by Conc f : ConcA→ ConcB the restriction
of Con f . Notice that Conc is a functor from the category of lattices with morphisms
of lattices to the category of (∨, 0)-semilattice with (∨, 0)-homomorphism.

The kernel ker f = {(x, y) ∈ K2 | f(x) = f(y)} is a congruence of K, for any
morphism of lattices f : K → L. For β ∈ ConB we denote by f−1(β) the largest
congruence α of A such that (Conc f)(α) ⊆ β, notice that f−1(β) = {(x, y) ∈ A2 |
(f(x), f(y)) ∈ β} is a congruence of K.

We denote by M(L) the set of all meet-irreducible elements of a lattice L. Notice
that M(ConA) is the set of all congruences α of a lattice A such that A/α is
subdirectly irreducible.

For a lattice L and a, b in L, we denote by [a, b]L the set of all x in L such that
a ≤ x ≤ b. We say that [a, b]L is an interval of L. The length of a chain C is
(cardC)− 1. The length of a lattice L is the maximal length of a chain contained
in L.

If K ⊆ L are lattices and α is a congruence of L we identify K/(α ∩K2) with
the sublattice K/α = {a/α | a ∈ K} of L. A congruence-preserving extension of a
lattice K is a lattice L that contains K such that any congruence of K has a unique
extension to L. Equivalently, Conc f is an isomorphism, where f : K → L denotes
the inclusion map. We also say that K is a congruence-preserving sublattice of L.

For sets X and I we often denote ~x = (xi | i ∈ I) an element of XI . In particular,
given n < ω we denote by ~x = (x0, . . . , xn−1) an n-tuple of X.

A nonempty poset P is directed if for all x, y ∈ P there exists z ∈ P such that
z ≥ x, y.
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3. Congruence-bounded lattices with bounded
congruence-preserving extensions

The aim of this section is to study varieties of lattices in which each congruence-
bounded lattice has a bounded congruence-preserving extension.

Definition 3.1. A lattice L is congruence-bounded if 1L is a compact congruence.

Notation 3.2. Given a variety V of lattices, we denote by Vb the category in which
objects are congruence-bounded lattices of V, and a morphism f : A → B in Vb is
a morphism of lattices such that (Conc f)(1A) = 1B .

We refer to [4, Definition 1-3.1] or [1, Definitions 1.1 and 1.13] for the definition
of finitely presented object.

Lemma 3.3. Let V be a variety of algebras. The following statements hold
(1) Let P be a directed poset, let ~A be a P -indexed diagram in Vb. Let (A, fp |

p ∈ P ) be a colimit cocone of ~A in V. Then (A, fp | p ∈ P ) is a colimit
cocone of ~A in Vb.

(2) The subcategory Vb of V is closed under small directed colimits.
(3) If V is locally finite, then each finite algebra of V is a finitely presented

object of Vb.

Proof. Let P be a directed poset, let ~A = (Ap, fp,q | p ≤ q in P ) be a diagram
in Vb. Let (A, fp | p ∈ P ) be a colimit cocone of ~A in V.

Let p ∈ P , let α ∈ ConcA. As Conc preserves directed colimits, there is q ≥ p
and β ∈ ConAq such that α = (Conc fq)(β), therefore

(Conc fp)(1Ap
) = (Conc fq ◦ fp,q)(1Ap

) = (Conc fq)(1Aq
) ⊇ (Conc fq)(β) = α.

Thus ConcA is bounded and (Conc fp)(1Ap) = 1A for all p ∈ P . So (A, fp | p ∈ P )
is a cocone of ~A in Vb.

Let (B, gp | p ∈ P ) be a cocone of ~A in Vb, there is g : A → B a morphism
in V such that g ◦ fp = gp for all p ∈ P . Let p ∈ P , as (Conc fp)(1Ap) = 1A and
(Conc gp)(1A) = 1B , it follows that g is a morphism in Vb. Therefore (A, fp | p ∈ P )
is a colimit cocone of ~A in Vb. So (1) holds.

Let P be a directed poset. Let ~A = (Ap, fp,q | p ≤ q in P ) and ~B = (Bp, gp,q |
p ≤ q in P ) be diagrams in Vb, together with colimit cocones in V

(A, fp | p ∈ P ) = lim−→
~A

(B, gp | p ∈ P ) = lim−→
~B

Let (hp)p∈p : ~A → ~B be a natural transformation in Vb, denote by h : A → B the
morphism of V such that h ◦ fp = gp ◦ hp for all p ∈ P . The following equalities
hold

(Conc h)(1A) = (Conc h)((Conc fp)(1Ap
)) as fp is a morphism in Vb.

= (Conc gp)((Conc hp)(1Ap)) as h ◦ fp = gp ◦ hp.

= (Conc gp)(1Bp
) as hp is a morphism in Vb.

= 1B as gp is a morphism in Vb.

Thus h is a morphism in Vb. Therefore (2) holds.
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Let B be a finite algebra in V, it follows that 1B is compact hence B ∈ Vb.
Let P be a directed poset. Let ~A = (Ap, fp,q | p ≤ q in P ) be a diagram in Vb, let
(A, fp | p ∈ P ) be a colimit cocone of ~A in Vb. Let h : B → A be a morphism in Vb.

As B is finite, there exists p ∈ P such that h(B) ⊆ fp(Ap). Let X ⊆ Ap finite,
such that h(B) = fp(X). As V is locally finite C the subalgebra of Ap generated
by X is finite. Moreover h(B) = fp(C). As C is finite, there exists q ≥ p, such
that fq � (fp,q(C)) is an embedding. Thus changing p to q and C to fp,q(C) we can
assume that fp � C is an embedding.

As C ∼= fp(C) = h(B), there is an isomorphism k : h(B)→ C such that k ◦ fp =
idf(B), hence fp ◦ k ◦ h = h, put h′ = k ◦ h. Notice that:

(Conc fp)((Conc h
′)(1B)) = (Conc h)(1B) = 1A = (Conc fp)(1Ap

),

therefore there is q ≥ p such that:

(Conc fp,q ◦ h′)(1B) = (Conc fp,q)(1Ap) = 1Aq .

Put h′′ = fp,q ◦h′, thus (Conc h
′′)(1B) = 1Aq

, so h′′ is a morphism in Vb. Moreover
fq ◦ h′′ = fq ◦ fp,q ◦ h′ = fp ◦ h′ = fp ◦ k ◦ h = h. �

If all congruence-bounded lattices in a variety have congruence-preserving ex-
tensions with 0 then they have congruence-preserving extensions of bigger length.

Lemma 3.4. Let V be a variety of lattices such that every countable lattices in Vb

has a congruence-preserving extension in V0. Let A be a countable lattice in Vb,
let a < b < c in A such that ΘA(b, c) = 1A. There is a congruence-preserving
extension B ∈ V of A and t ∈ B such that t < a.

Proof. Denote by A0 = {u, v} a two element chain with u < v, put A1 = A, put
A2 = A. Denote by f1 : A0 → A1, u 7→ b, v 7→ c. Denote by f2 : A0 → A2, u 7→ a,
v 7→ c.

The following construction is a special case of condensate (cf. [3, 4]). However,
in this case, the construction is simple; we give a self-contained proof.

Given an element ~a = (a0, a
n
1 , a

n
2 | n ∈ N) of A0 ×AN

1 ×AN
2 we denote:

supp~a = {n ∈ N | an1 6= f1(a0) or an2 6= f2(a0)}.
Given a finite subset S of N we denote:

LS = {~a ∈ A0 ×AN
1 ×AN

2 | suppA ⊆ S}.
Put L =

⋃
(LS | S is a finite subset of N). Denote by π0 : L → A0, ~a 7→ a0 and

πnk : L→ Ak, ~a 7→ ank for each k ∈ {1, 2} and each n ∈ N.

Claim 1. The lattice L is countable and belongs to Vb.

Proof of Claim. Let S be a finite subset of N. Notice that the restriction map
LS → A0 × AS1 × AS2 , ~a 7→ (a0, a

n
1 , a

n
2 | n ∈ S) is an isomorphism. Hence L

is countable (as a countable union of countable lattices). Moreover the following
equality holds

ker(π0 � LS) ∩
⋂
n∈S

ker(πn1 � LS) ∩
⋂
n∈S

ker(πn2 � LS) = 0LS
. (3.1)

Let ~u = (u, f1(u), f2(u) | n ∈ N), ~v = (v, f1(v), f2(v) | n ∈ N). Let S be a finite
subset of N. Notice that ~u,~v belong to LS , moreover the following equalities hold

(Conπ0 � LS)(ΘLS
(~u,~v)) = ΘA0(u, v) = 1A0 .
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It implies that
ker(π0 � LS) ∨ΘLS

(~u,~v) = 1LS
. (3.2)

Similarly, given k ∈ {1, 2} and n ∈ N the following equalities hold

(Conπnk � LS)(ΘLS
(~u,~v)) = ΘAn

k
(fk(u), fk(v)) = 1Av

k
.

Thus we obtain
ker(πnk � LS) ∨ΘLS

(~u,~v) = 1LS
. (3.3)

Put θ0 = ker(π0 � LS), put θnk = ker(πnk � LS) for all k ∈ {1, 2} and all n ∈ N, put
α = ΘLS

(~u,~v). The following equalities hold

ΘLS
(~u,~v) = α ∨

(
θ0 ∩

⋂
n∈S

θn1 ∩
⋂
n∈S

θn2

)
, by (3.1).

= (α ∨ θ0) ∩
⋂
n∈S

(α ∨ θn1 ) ∩
⋂
n∈S

(α ∨ θn2 ), by distributivity.

= 1LS
, by (3.2) and (3.3).

As L =
⋃

(LS | S is a finite subset of N), it follows that 1L = ΘL(~u,~v) is a compact
congruence of L, hence L belongs to Vb. � Claim 1.

Claim 2. Let θ ∈ Conc L. There is n ∈ N such that (Conc fk◦π0)(θ) = (Conc π
n
k )(θ)

for k ∈ {1, 2}.

Proof of Claim. We first assume that θ is principal, there is ~a,~b in L such that
θ = ΘL(~a,~b). We prove that the equality holds for all n except finitely many. Let
n ∈ N− (supp(~a) ∪ supp(~b)), let k ∈ {1, 2}. The following equalities hold

(Conc fk ◦ π0)(ΘL(~a,~b)) = ΘAk
(fk(πk(~a)), fk(πk(~b)))

= ΘAk
(fk(a0), fk(b0))

= ΘAk
(an, bn), as n 6∈ supp(~a) ∪ supp(~b).

= ΘAk
(πnk (~a), πnk (~b))

= (Conc π
n
k )(ΘL(~a,~b))

As a compact congruence is a finite join of principal congruences the conclusion
follows. � Claim 2.

Let K ∈ V0 be a congruence-preserving extension of L. We identify ConcK and
Conc L. Denote by p0 : K � K/ kerπ0 and by pnk : K � K/ kerπnk the canonical
projections. Denote by ink : Ank ↪→K/ kerπnk the morphism induced by the inclusion
map L ↪→K, that is the morphism such that ink ◦ πnk = pnk . Notice that Conc i

n
k is

an isomorphism, for all k ∈ {1, 2} and all n ∈ N.
Put ~u = (u, f1(u), f2(u) | n ∈ N). Put θ = ΘK(0, ~u). From Claim 1 there is

n ∈ N such that (Conc fk ◦ π0)(θ) = (Conc π
n
k )(θ), for all k ∈ {1, 2}.

If θ ⊆ kerπ0 then (Conc π
n
1 )(θ) = (Conc f1 ◦ π0)(θ) = 0A1 . Therefore the

following equalities hold

in1 (f1(u)) = in1 (πn1 (~u)), by definition of ~u.

= pn1 (~u), as in1 is induced by the inclusion map.

= pn1 (0), as (0, ~u) ∈ ker pn1 = kerπn1 .
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However a < b = f1(u), so in1 (a) < in1 (f1(u)) = pn1 (0) ≤ in1 (a); a contradiction. It
follows that θ 6⊆ ker p0.

Notice that (Conc f2◦π0)(θ) = (Conc π
n
2 )(θ). As θ 6⊆ ker p0 and Conc f2 separates

0, it follows that (Conc π
n
2 )(θ) 6= 0A2 , hence:

pn2 (0) < pn2 (~u) = in2 (πn2 (~u)) = in2 (f2(u)) = in2 (a).

As in2 is an isomorphism we can identify L/ kerπn2 with a congruence-preserving
extension of A = A2, put t = pn2 (0), we have t < a. �

Remark 3.5. In the context of Lemma 3.4, changing B to one of its sublattices, we
can assume that B is countable (cf. [3, Lemma 3.6]).

Theorem 3.6. Let V be a variety of lattices. If each subdirectly irreducible lattice
in V has no infinite decreasing sequence then the following statements are equivalent.

(1) Each countable congruence-bounded lattice in V has a congruence-preserving
extension in V0.

(2) Let L ∈ V be a subdirectly irreducible lattice, let x < y in L. If ΘL(x, y) =
1L then x = 0.

(3) Let L ∈ V, let x < y in L. If ΘL(x, y) = 1L then x = 0.
(4) The category Vb is a subcategory of V0.

Proof. The implication (4) =⇒ (1) is immediate.
Assume that (1) holds and (2) fails. There is a subdirectly irreducible lattice

L ∈ V and elements a < b < c in L such that ΘL(b, c) = 1L. Changing L to one of
its sublattice we can assume that L is countable. Put L0 = L and a0 = a.

Let n > 0. Assume that we have constructed a sequence (Li)i<n of countable
lattices and a sequence (ai)i<n such that ai ∈ Li, the lattice Li+1 is a congruence-
preserving extension of Li, and ai+1 < ai, for all i < n− 1.

Notice that an−1 ≤ a0 = a < b < c. By Lemma 3.4 there is a congruence-
preserving extension Ln of Ln−1 and an ∈ Ln such that an < an−1. Moreover by
Remark 3.5 we can assume that Ln is countable. Hence we construct by induction
a sequence (Li)i<ω of countable lattices and a sequence (ai)i<ω such that ai ∈ Li,
the lattice Li+1 is a congruence-preserving extension of Li, and ai+1 < ai, for all
i < ω.

Put K =
⋃
n<ω Li, as Conc preserves directed colimits it follows that ConcK ∼=

Conc L0 therefore K is subdirectly irreducible, moreover the ais form an infinite
decreasing sequence; a contradiction.

Assume that (2) is satisfied, let L ∈ Vb, let x < y in L such that ΘL(x, y) = 1L.
Let α ∈M(ConL), then L/α is subdirectly irreducible, moreover ΘL/α(x/α, y/α) =
1L/α, so it follows from (2) that x/α = 0.

Thus x/α = 0 for all α ∈ M(ConL), however
⋂
M(ConL) = 0L, hence x = 0.

Therefore (2) =⇒ (3). Assume that (3) holds, let L in Vb, there are x, y in L such
that ΘL(x, y) = 1L, it follows from (3) that L has 0. Let f : K → L be a morphism
in Vb, there are x, y in K such that ΘK(x, y) = 1K . The following equalities hold:

ΘL(f(x), f(y)) = (Conc f)(ΘK(x, y)) = (Conc f)(1K) = 1L.

Therefore, from (3) we obtain f(0) = f(x) = 0, therefore f is a morphism in V0. �

Remark 3.7. There are lattices without any congruence-preserving extension with 0
(in any variety of lattices). For example consider an infinite chain A = {x0 > x1 >
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x2 > . . . }. Notice that ConcA has no largest element. Let B be a congruence-
preserving extension of A with 0, we identify ConA and ConB. The containment
ΘB(0, x0) ⊇ ΘB(xk, x0) holds for all k < ω. Therefore 1B ⊇ ΘB(0, x0) ⊇ 1A = 1B
hence 1B = ΘB(0, x0) is compact; a contradiction.

The following corollary is an immediate consequence of Theorem 3.6 and its dual.

Corollary 3.8. Let V be a variety of lattices. If each subdirectly irreducible lattices
in V has no infinite chain then the following statements are equivalent.

(1) Each countable lattice in Vb has a congruence-preserving extension in V0,1.
(2) Let L ∈ V be a subdirectly irreducible lattice, let x < y in L. If ΘL(x, y) =

1L then x = 0 and y = 1.
(3) The equality Vb = V0,1 holds (the two categories have the same objects and

the same morphisms).

Example 3.9. Denote by M3 the variety of lattices generated by M3 (see Figure 1).
Notice that ΘM3(x, 1) = 1M3 , so M3 fails the condition Theorem 3.6(2) hence there
is a congruence-bounded lattice L in M3 with no congruence-preserving extension
with 0 in M3.

Denote by N5 the variety of lattices generated by N5 (see Figure 1). The sub-
directly irreducible lattices of N5 are, up to isomorphisms, N5 and 2, they satisfy
both the condition Corollary 3.8(2). Therefore each congruence-bounded lattice
in N5 has 0 and 1.
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Figure 1. The lattices M3 and N5.

4. A functor

The goal of this section is to construct a functor Ψ: Mb
n → M0,1

n , preserving
colimits and such that Conc ◦Ψ is naturally equivalent to Conc.

The following Lemma expresses that an interval of a quotient of a lattice is a
quotient of an interval (we identify a quotient of a sublattice with a sublattice of a
quotient).

Lemma 4.1. Let a ≤ b in a lattice L, let θ ∈ ConL, then [a, b]L/θ = [a/θ, b/θ]L/θ.
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Proof. Let x ∈ [a, b]L/θ, there is y ∈ [a, b]L such that y/θ = x, thus a/θ ≤ y/θ =
x ≤ b/θ, therefore x ∈ [a/θ, b/θ]L/θ.

Let x ∈ [a/θ, b/θ]L/θ, there is y ∈ L such that y/θ = x. Put y′ = (y ∨ a) ∧ b,
then a ≤ y′ ≤ b, and y′/θ = (y/θ ∨ a/θ) ∧ b/θ = x, therefore x ∈ [a, b]L/θ. �

Remark 4.2. Let K be a simple lattice in Mω, let x < y in K. The lattice [x, y]K
is simple.

Lemma 4.3. Let K be a simple lattice in Mω, let x < y in K, let u ≤ v and
u′ ≤ v′ in [x, y]K . If ΘK(u, v) = ΘK(u′, v′) then Θ[x,y]K (u, v) = Θ[x,y]K (u′, v′)

Proof. As ΘK(u, v) = ΘK(u′, v′) it follows that u = v if and only if u′ = v′.
If u = v then Θ[x,y]K (u, v) = 0[x,y]K = Θ[x,y]K (u′, v′). If u 6= v, as [x, y]K is

simple (cf. Remark 4.2), it follows that Θ[x,y]K (u, v) = 1[x,y]K = Θ[x,y]K (u′, v′). �

Remark 4.4. Let L be a finite modular lattice then ConL is a Boolean semilattice,
moreover the atoms of ConL are the congruences of the form ΘL(u, v) for u ≺ v
in L.

Lemma 4.5. Let L be a finite lattice in Mω, let x < y in L. Denote by f : [x, y]L ↪→
L the inclusion map. The restriction Con f : Con[x, y]L → ConL ↓ ΘL(x, y) is an
isomorphism.

Proof. Put A = [x, y]L, as A and L are both finite modular lattices, it follows that
ConA and ConL are finite Boolean semilattice.

Let θ be an atom of ConA. By Remark 4.4 there are u ≺ v in A such that
θ = ΘA(u, v), however u ≺ v in L, it follows from Remark 4.4 that ΘL(u, v) is an
atom of ConL. Thus (Con f)(θ) = ΘL(u, v) is an atom of ConL.

The following equalities hold∨
(Con f)(At(ConA)) = (Con f)(

∨
At(ConA))

= (Con f)(1A)

= (Con f)(ΘA(x, y))

= ΘL(x, y).

As ConL is a Boolean semilattice and (Con f)(At(ConA)) ⊆ At(ConL), it follows
that (Con f)(At(ConA)) = At(ConL↓ΘL(x, y)). Therefore the restriction of Con f
is surjective.

To prove that Con f is one-to-one we just have to prove that (Con f)�At(ConL)
is one-to-one. Let α, β ∈ At(ConL). Assume that (Con f)(α) = (Con f)(β). Let
u ≺ v in A such that α = ΘA(u, v), let u′ ≺ v′ in A such that β = ΘA(u′, v′).
Notice that ΘL(u, v) = (Con f)(α) = (Con f)(β) = ΘL(u′, v′).

Let θ ∈ M(ConL). If x/θ = y/θ, then u/θ = v/θ = u′/θ = v′/θ, hence
ΘA/θ(u/θ, v/θ) = ΘA/θ(u′/θ, v′/θ).

Now we assume that x/θ < y/θ. By Lemma 4.1, A/θ is an interval in L/θ. Notice
that ΘL/θ(u/θ, v/θ) = ΘL/θ(u′/θ, v′/θ), moreover L/θ is simple (see Remark 4.4),
therefore Lemma 4.3 implies that ΘA/θ(u/θ, v/θ) = ΘA/θ(u′/θ, v′/θ). Thus the
following equality holds

ΘA(u, v) ∨ (θ ∩A2) = ΘA(u′, v′) ∨ (θ ∩A2), for each θ ∈M(ConL).

However M(ConL) is finite, ConA is distributive and
∧
M(ConL) = 0L, hence

α = ΘA(u, v) = ΘA(u′, v′) = β. Therefore Conc f is one-to-one. �
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The following corollary is an immediate consequence of Lemma 4.5.

Corollary 4.6. Let L be a finite lattice in Mω, let a ≤ b ≤ c ≤ d in L such that
ΘL(b, c) = ΘL(a, d). Then Θ[a,d]L(b, c) = 1[a,d]L .

Remark 4.7. Denote by M3,3 the variety of lattices generated by M3,3, see Figure 2.
Corollary 4.6 cannot be generalized for M3,3. We have ΘM3,3(b, c) = 1M3,3 and
Θ[a,d](b, c) 6= 1[a,d].
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Figure 2. The lattices Mn and M3,3.

The following result appears in [5, Theorem 10.4]. It gives a description of finitely
generated congruences of general algebra.

Lemma 4.8. Let B be an algebra, let m be a positive integer, let x, y ∈ B, and
let ~x, ~y be m-tuples of B. Then ΘB(x, y) ≤

∨
i<m ΘB(xi, yi) if and only if there are

a positive integer n, a list ~z of parameters from B, and terms t0, . . . , tn such that

x = t0(~x, ~y, ~z),

y = tn(~x, ~y, ~z),

tj(~y, ~x, ~z) = tj+1(~x, ~y, ~z) (for all j < n).

It follows from Lemma 4.8 that if two finitely generated congruences are compa-
rable in a locally finite algebra, then there is a “reason” in a finite subalgebra.

Corollary 4.9. Let B be a locally finite algebra, let m be a positive integer, let X
be a finite subset of B, let x, y ∈ X, and let ~x, ~y be m-tuples of X, if ΘB(x, y) ≤∨
i<m ΘB(xi, yi), then there is a finite subalgebra C of B such that X ⊆ C and

ΘC(x, y) ≤
∨
i<m ΘC(xi, yi).

Lemma 4.10. Let L ∈Mb
ω. Let x < y in L such that ΘL(x, y) = 1L. Denote by P

the set of all finite sublattice A of L such that x, y ∈ A and ΘA(x, y) = 1A. The
following statement are satisfied

(1) Let X be a finite subset of L, there is A ∈ P such that X ⊆ A.
(2) The poset (P,⊆) is directed.
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Proof. Let X be a finite subset of L, we can assume that x, y ∈ X. Put a =
∧
X,

put b =
∨
X, hence a ≤ x < y ≤ b. Notice that ΘL(a, b) = ΘL(x, y) = 1L. It

follows from Corollary 4.9 that there exists a finite sublattice A of L such that
X ⊆ A and ΘA(a, b) ⊆ ΘA(x, y). However a ≤ x < y ≤ b so ΘA(a, b) = ΘA(x, y).
It follows from Corollary 4.6 that Θ[a,b]A(x, y) = 1[a,b]A .

Put B = [a, b]A. Notice that X ⊆ B and ΘB(x, y) = 1B , therefore B belongs
to P . Hence (1) holds.

The statement (2) follows from (1). �

From Lemma 4.10 and Lemma 3.3 we obtain the following corollary.

Corollary 4.11. Let n ≤ ω. Every lattice in Mb
n is a directed colimit of finite

lattices in Mb
n. The finitely presented objects in Mb

n are the finite lattices in Mb
n.

Each lattice in Mb
ω has a bounded congruence-preserving sublattice. It is a

generalization of Lemma 4.5 in the infinite case.

Corollary 4.12. Let L ∈ Mb
ω. Let x < y in L such that 1L = ΘL(x, y). Denote

by f : [x, y]L ↪→ L the inclusion map, then Conc f is an isomorphism.

Proof. Denote by P the set of all finite sublattice A of L, such that x, y ∈ A and
ΘA(x, y) = 1A. Lemma 4.10 implies that (P,⊆) is a directed poset, moreover
L =

⋃
A∈P A. It follows that [x, y]L =

⋃
A∈P [x, y]A.

Denote by fA : [x, y]A → A the inclusion map. As ΘA(x, y) = 1A, it follows
from Lemma 4.5 that Con fA : Con[x, y]A → ConA is an isomorphism, for all
A ∈ P . Moreover f =

⋃
A∈P fA. Therefore Con f = lim−→Con fA, but Con fA is an

isomorphism for all A ∈ P , therefore Con f is an isomorphism. �

Corollary 4.12 extends to diagrams indexed by poset with 0.

Corollary 4.13. Let P be a poset with 0. Let ~A = (Ap, fp,q | p ≤ q in P ) be
a diagram in Mb

ω. Let x < y in A0 such that 1A0 = ΘA0(x, y). Put Bp =
[f0,p(x), f0,p(y)]Ap

, denote by tp : Bp ↪→Ap the inclusion map, denote by gp,q : Bp →
Bq the restriction of fp,q, for all p ≤ q in P . Put ~B = (Bp, gp,q | p ≤ q in P ), it is
a diagram in M0,1

ω . The family (tp)p∈P is a natural transformation from ~B to ~A.
Moreover (Conc tp)p∈P is a natural equivalence.

Remark 4.14. The Corollary 4.13 cannot be extended to diagrams indexed by ar-
bitrary poset. We consider the sublattices A0 = {0, x} and A1 = {x, 1} of M3 (see
Figure 1). The three lattices A0, A1,M3 form a diagram ~A of Mb

3 under inclusion.
The diagram ~A is not a congruence-preserving extension of any diagram in M

0,1
3 .

The following Lemma is proved in [3, Lemma 8.1].

Lemma 4.15. Let A be a finite algebra with ConA distributive, let α ∈ ConA,
and put Q = {θ ∈ M(ConA) | α 6≤ θ}. If all A/θ, for θ ∈ Q, are simple, then the
canonical map ConA→ Con(A/α)×

∏
θ∈Q Con(A/θ) is an isomorphism.

Notation 4.16. Let 3 ≤ n ≤ ω, we denote by Mb†
n the full subcategory of Mb

n in
which objects are the finite lattices in Mb

n.

Remark 4.17. Let f : A→ B a morphism of distributive lattices. If (Conc f)(1A) =
1B , then f is a 0, 1-homomorphism.
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Lemma 4.18. There is a functor Ψ: Mb†
n → M0,1

n such that Conc ◦Ψ is naturally
equivalent to Conc.

Proof. Let A ∈Mn be a finite lattice, we denote by αA the smallest congruence of A
such that A/αA is distributive. Denote QA = {θ ∈ M(ConA) | αA 6≤ θ}. Notice
that if β ∈ QA, then A/β is simple and not distributive, thus A/β ∈ {Mk | 3 ≤ k <
ω}. Denote RA = {αA} ∪QA. Denote SA = {θ ∈ ConA | θ ⊇ αA or θ ∈ RA}.

Put Ψ(A) =
∏
β∈RA

A/β. Denote by tA : A → Ψ(A), x 7→ (x/β)β∈RA
. Put

ξA = Con tA, by Lemma 4.15 the map ξA is an isomorphism.
Given θ ∈ SA, we denote

pAθ : Ψ(A)→ A/θ

(uβ/β)β∈RA
7→

{
uθ/θ if θ ∈ RA.
uαA

/θ if θ ⊇ αA.

Given θ ⊆ γ in SA, we denote by pAθ,γ : A/θ � A/γ the canonical projection. The
following equality is immediate:

pAθ,γ ◦ pAθ = pAγ , for all θ ⊇ γ in SA. (4.1)

Given θ in SA, we denote by πAθ : A�A/θ the canonical projection. The following
equality holds

pAθ ◦ tA = πAθ , for all θ ∈ SA. (4.2)

Claim. Let f : A→ B be a morphism in Mb†
n . Let β ∈ SB. The following statement

are satisfied

(1) f−1(β) ∈ SA.
(2) If the map A/f−1(β) → B/β induced by f does not preserve bounds, then

β ∈ QB and A/f−1(β) is the two-element chain.

Proof of Claim. Denote by g : A/f−1(β)↪→B/β the morphism induced by f . Notice
that g is a morphism in Mb†

n .
If β ⊇ αB , then B/β is distributive, hence A/f−1(β) is distributive. It follows

from Remark 4.17 that g is a 0, 1-homomorphism. Moreover f−1(β) ⊇ αA, therefore
f−1(β) ∈ SA.

Assume that β 6⊇ αB , it follows that β ∈ QB . If f−1(β) 6⊇ αA, then A/f−1(β)
is not distributive, however A/f−1(β) embeds into B/β ∈ {Mk | 3 ≤ k < ω},
therefore A/f−1(β) is simple. It follows that f−1(β) ∈ QA.

Assume that β 6⊇ αB and A/f−1(β) is not a two-element chain. Notice that
A/f−1(β) has at least three elements. As B/β ∈ {Mk | 3 ≤ k < ω} and g is an
embedding, it follows that A/f−1(β) belongs (up to isomorphism) to {Mk | 3 ≤
k < ω} ∪ {3,22}.

As the length of B/β is two and the length of all lattices in {Mk | 3 ≤ k <
ω} ∪ {3,22} is two, it follows that g is a 0, 1-homomorphism. � Claim.

Let f : A→ B. Let β ∈ SB . If A/f−1(β) is not a two-element chain or β 6∈ QB ,
we denote by fβ : A/f−1(β) → B/β the morphism induced by f . It follows from
the claim that f is a 0, 1-homomorphism.

If A/f−1(β) is a two-element chain and β ∈ QB , we denote by fβ : A/f−1(β)→
B/β the only 0, 1-homomorphism.
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Let γ ⊇ θ ⊇ αB in ConB. Notice that θ, γ 6∈ QB , hence fθ : A/f−1(θ)→ B/θ is
the map induced by f and fγ : A/f−1(γ) → B/γ is the map induced by f . Thus
the following equality holds

pBθ,γ ◦ fθ = fγ ◦ pAf−1(θ),f−1(γ), for all γ ⊇ θ ⊇ αB in ConB. (4.3)

We denote

Ψ(f) : Ψ(A)→ Ψ(B)

u 7→ (fβ(pAf−1(β)(u)))β∈RB

Notice that
pBθ ◦Ψ(f) = fθ ◦ pAf−1(θ), for each θ ∈ QB . (4.4)

Let θ ⊇ αB , the following equalities hold

pBθ ◦Ψ(f) = pBαB ,θ ◦ p
B
αB
◦Ψ(f), by (4.1).

= pBαB ,θ ◦ fαB
◦ pAf−1(αB), by (4.4).

= fθ ◦ pAf−1(αB),f−1(θ) ◦ p
A
f−1(αB), by (4.3).

= fθ ◦ pAf−1(θ), by (4.1).

It follows that
pBθ ◦Ψ(f) = fθ ◦ pAf−1(θ), for each θ ∈ SB . (4.5)

Let f : A → B and g : B → C be morphisms in Mb†
n . Let γ ∈ SC . As-

sume that A/f−1(g−1(γ)) is not a two-element chain. As A/f−1(g−1(γ)) em-
beds into B/g−1(γ) it follows that B/g−1(γ) is not a two-element chain. Thus
fg−1(γ) : A/f−1(g−1(γ))→ B/g−1(γ) is the morphism induced by f , similarly gγ is
induced by g, and (g ◦ f)γ is induced by g ◦ f , therefore (g ◦ f)γ = gγ ◦ fg−1(γ).

Assume that A/f−1(g−1(γ)) is a two-element chain. Notice that both (g ◦ f)γ
and gγ ◦ fg−1(γ) preserve bounds, however there is a unique 0, 1-homomorphism
A/f−1(g−1(γ))→ C/γ. Therefore the following equality holds

(g ◦ f)γ = gγ ◦ fg−1(γ), for all γ ∈ SC . (4.6)

Let γ ∈ SC . The following equalities hold

pCγ ◦Ψ(g ◦ f) = (g ◦ f)γ ◦ pAf−1(g−1(γ)), by (4.5).

= gγ ◦ fg−1(γ) ◦ pAf−1(g−1(γ)), by (4.6).

= gγ ◦ pBg−1(γ) ◦Ψ(f), by (4.5).

= pCγ ◦Ψ(g) ◦Ψ(f), by (4.5).

Thus Ψ(g ◦ f) = Ψ(g) ◦Ψ(f). Moreover it is easy to prove that Ψ(idA) = idΨ(A)

for all A in Mb†
n . Therefore Ψ is a functor.

Let f : A → B be a morphism in Mb†
n . Denote by g : A/f−1(γ) → B/γ the

morphism induced by f . Notice that g is a morphism in Mb†
n . Let γ ∈ SC . The

following equalities hold

pBγ ◦Ψ(f) ◦ tA = fγ ◦ pAf−1(γ) ◦ tA, by (4.5).

= fγ ◦ πAf−1(γ), by (4.2).
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The following equalities hold

pBγ ◦ tB ◦ f = πBγ ◦ f, by (4.2).

= g ◦ πAf−1(γ), as g is induced by f.

If A/f−1(γ) is not a two-element chain then the map fγ is induced by f , hence
g = fγ , thus Con fγ = Con g.

Assume that A/f−1(γ) is a two-element chain. Both map Con fγ and Con g
are (∨, 0, 1)-homomorphism, however there is only one (∨, 0, 1)-homomorphism
ConA/f−1(γ)→ ConB/γ, thus Con fγ = Con g. Therefore the following equality
holds

(Con pBγ ) ◦ (Con Ψ(f)) ◦ ξA = (Con pBγ ) ◦ ξB ◦ (Con f), for all γ ∈ RB
It implies that (Con Ψ(f)) ◦ ξA = ξB ◦ (Con f). Thus (ξA | A ∈ Mb†

n ) is a natural
equivalence. �

Corollary 4.19. Let n ≥ 3. There exists a functor Ψ: Mb
n → M0,1

n , preserving
colimits and such that Conc ◦Ψ is naturally equivalent to Conc.

Proof. Let Ψ: Mb†
n → M0,1

n be the functor constructed in Lemma 4.18, such that
Conc ◦Ψ is naturally equivalent to Conc.

The following statements hold.
(1) The category Mb†

n is a full subcategory of finitely presented objects in Mb
n

(cf. Lemma 3.3(3)).
(2) The category M0,1

n has all small directed colimits.
(3) All objects in Mb

n is a small directed colimits of objects in Mb†
n (cf. Corol-

lary 4.11).
(4) The category Mb

n has all small hom-sets.
It follows from [4, Proposition 1-4.2] that there exists a functor Ψ: Mb

n →M0,1
n

such that Ψ � Mb†
n = Ψ and Ψ preserves all small directed colimits.

Denote by S the category of (∨, 0, 1)-semilattice with (∨, 0, 1)-homomorphism.
The category S has all small directed colimits. Both functors Conc ◦Ψ: Mb

n → S and
Conc : Mb

n → S preserve all small directed colimits and Conc ◦Ψ�Mb†
n = Conc ◦Ψ ∼=

Conc �Mb†
n . Therefore it follows from the uniqueness (cf. [4, Remark 1-4.5]) that

Conc ◦Ψ ∼= Conc. �
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[1] J. Adámek and J. Rosický, “Locally Presentable and Accessible Categories”. London Math-
ematical Society Lecture Note Series 189. Cambridge University Press, Cambridge, 1994.
xiv+316 p. ISBN: 0-521-42261-2

[2] N. Funayama and T. Nakayama, On the distributivity of a lattice of lattice congruences, Proc.

Imp. Acad. Tokyo 18 (1942), 553-554.
[3] P. Gillibert, Critical points of pairs of varieties of algebras, Internat. J. Algebra Comput. 19,

no. 1 (2009), 1–40.
[4] P. Gillibert and F. Wehrung, From objects to diagrams for ranges of functors, preprint 2010,

available online at http://hal.archives-ouvertes.fr/hal-00462941.

[5] G. Grätzer, “Universal Algebra”. D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto, Ont.-

London, 1968. xvi+368 p.
[6] G. Grätzer and F. Wehrung, A new lattice construction: the box product, J. Algebra 221,

no. 1 (1999), 315–344.
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