ADDING BOUNDS WHILE PRESERVING CONGRUENCES FOR
LATTICES

PIERRE GILLIBERT

ABSTRACT. A lattice is congruence-bounded if its largest congruence is finitely

generated. We study the following two statements for some varieties V of

lattices.

(Q1) For every congruence-bounded lattice K in 'V there is a bounded lattice
L €V such that K and L have isomorphic congruence lattices.

(Q2) Every congruence-bounded lattice in V has a bounded congruence-pre-
serving extension in V.

Given a finitely generated variety V of lattices, we prove that (Q2) holds
only in the trivial case, that is if each congruence-bounded lattice in V is
bounded. For example in N5, the variety generated by the five-element non-
modular lattice, every congruence-bounded lattice is bounded.

Let n > 3. The statement (Q2) fails for the variety M,, generated by the
lattice of length 2 with n atoms, however (Q1) holds and the construction can
be made functorial.

1. INTRODUCTION

The set Con L of all congruences of a lattice L forms an algebraic lattice for
the inclusion. We denote by ©p(z,y) the smallest congruence that identifies x
and y, for all z,y in L. A congruence « of L is principal if there are z,y in L
such that « = O(z,y). A finitely generated congruence is a finite join of principal
congruences. The set Con. L of all finitely generated congruences of L forms a
distributive (V,0)-semilattice for the inclusion (cf. [2]).

A lattice is congruence-bounded if its largest congruence is compact (or equiv-
alently finitely generated). Every bounded lattice is congruence-bounded but the
converse does not hold in general. For example consider the lattice M3 on Figure 1,
denote by L the set of all sequences (an)n<, of elements of M3 such that either
{n <w | a, # 0} is finite or {n < w | a, # x} is finite, endowed with the com-
ponentwise ordering. It is easy to check that L is a lattice. Viewing 0 and x as
constant sequences, Or,(0,z) = L x L is the largest congruence of L. However L
has no largest element.

We know from [8] that there are distributive (V,0, 1)-semilattices which are not
isomorphic to the congruence lattice of any lattice. However many problems about
congruence lattices of lattices are still open. The problem whether for each lattice K
there exists a lattice L with 0 such that Con. K = Con, L is open (see [6, Problem
2] or the discussion before [7, Theorem 3.5]).
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2 P. GILLIBERT

The study of the following questions might be a good start to solve this prob-
lem. Let S be a (V,0,1)-semilattice, we assume that there exists a lattice K with
Con, K 2 S. Is it possible to find a bounded lattice L with Con. L = S? Can we
choose L to be a congruence-preserving extension of K?

We do not know the answers to those questions. However we study the following
related questions for small varieties 'V of lattices.

(Q1) For all K € VP there is L € V%! such that K and L have isomorphic
congruence lattices.
(Q2) Every K € V® has a congruence-preserving extension in V%!,

We prove in Corollary 3.8 that if each subdirectly irreducible lattice in V has no
infinite chain, then (Q2) holds only in the trivial case, that is if VP = V1.

Let n > 3, denote by M,, the variety of lattices generated by M,, the lattice on
Figure 2. We construct a functor ¥: M2 — M%! preserving colimits and such that
Con. oV is naturally equivalent to Con.. In particular (Q1) holds for M,,.

2. Basic CONCEPTS

We denote by 0 (resp., 1) the least (resp. largest) element of a poset if it exists.
We denote by 2 = {0, 1} the two-element lattice. We denote by 3 the three-element
lattice. Given an algebra A, we denote by 04 (resp., 14) the identity congruence
of A (resp., the largest congruence of A).

Let V be a variety of lattices, we denote by VO (resp., V%1) the class of all lattices
in V with 0 (resp., 0 and 1). We also consider V° (resp., V%!) as subcategories of V
with morphisms preserving 0 (resp., 0 and 1).

Given a morphism f: K — L of lattices, we denote by Con f: Con A — Con B
the map that sends a congruence « of K to the congruence of L generated by
{(f(x), fly) | (z,y) € a}. We denote by Con,. f: Con. A — Con. B the restriction
of Con f. Notice that Con, is a functor from the category of lattices with morphisms
of lattices to the category of (V,0)-semilattice with (V,0)-homomorphism.

The kernel ker f = {(z,y) € K? | f(z) = f(y)} is a congruence of K, for any
morphism of lattices f: K — L. For 3 € Con B we denote by f~1(3) the largest
congruence « of A such that (Con. f)(a) C 3, notice that f~1(8) = {(z,y) € A% |
(f(x), f(y)) € B} is a congruence of K.

We denote by M (L) the set of all meet-irreducible elements of a lattice L. Notice
that M(Con A) is the set of all congruences « of a lattice A such that A/« is
subdirectly irreducible.

For a lattice L and a,b in L, we denote by [a,b];, the set of all x in L such that
a < x < b. We say that [a,b]; is an interval of L. The length of a chain C is
(card C') — 1. The length of a lattice L is the maximal length of a chain contained
in L.

If K C L are lattices and « is a congruence of L we identify K/(a N K?) with
the sublattice K/a = {a/a |a € K} of L. A congruence-preserving extension of a
lattice K is a lattice L that contains K such that any congruence of K has a unique
extension to L. Equivalently, Con. f is an isomorphism, where f: K — L denotes
the inclusion map. We also say that K is a congruence-preserving sublattice of L.

For sets X and I we often denote & = (x; | i € I) an element of X’. In particular,
given n < w we denote by ¥ = (zo,...,Z,—1) an n-tuple of X.

A nonempty poset P is directed if for all z,y € P there exists z € P such that
zZ>T,y.
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3. CONGRUENCE-BOUNDED LATTICES WITH BOUNDED
CONGRUENCE-PRESERVING EXTENSIONS

The aim of this section is to study varieties of lattices in which each congruence-
bounded lattice has a bounded congruence-preserving extension.

Definition 3.1. A lattice L is congruence-bounded if 1y, is a compact congruence.

Notation 3.2. Given a variety V of lattices, we denote by V® the category in which
objects are congruence-bounded lattices of V, and a morphism f: A — B in Y’ is
a morphism of lattices such that (Con. f)(14) = 1.

We refer to [4, Definition 1-3.1] or [1, Definitions 1.1 and 1.13] for the definition
of finitely presented object.

Lemma 3.3. Let V be a variety of algebras. The following statements hold
(1) Let P be a directed poset, let A be a P-indexed diagram in V°. Let (A, I |
p € P) be a colimit cocone of A in V. Then (A, f, | p € P) is a colimit
cocone offY in VP.
(2) The subcategory VP of V is closed under small directed colimits.
(3) If V is locally finite, then each finite algebra of V is a finitely presented
object of V.
Proof. Let P be a directed poset, let A = (Ap, fp.g | P < gin P) be a diagram
in VP. Let (A, f, | p € P) be a colimit cocone of Ain V.

Let p € P, let o € Con. A. As Con, preserves directed colimits, there is ¢ > p
and § € Con A, such that a = (Con, f4)(5), therefore

(Con, fp)(lAp) = (Conc fqo fp,q)(lAp) = (Conc fq)(lAq) 2 (Conc fq)(ﬁ) = Q.
Thus Con, A is bounded and (Con, f,)(14,) =14 for allp € P. So (A, f, | p € P)
is a cocone of A in VP. .

Let (B,g, | p € P) be a cocone of A in V| there is g: A — B a morphism
in V such that go f, = g, for all p € P. Let p € P, as (Conc f,)(14,) = 14 and
(Conc gp)(14) = 1, it follows that g is a morphism in VP. Therefore (A, f, | p € P)
is a colimit cocone of A in VP. So (1) holds.

Let P be a directed poset. Let A = (Ap, foq | p < ¢in P) and B = (Bp, gp,q |
p < ¢ in P) be diagrams in V®, together with colimit cocones in V

(A, fplpeP)=1limA
(B,gp | p€ P)=1limB
Let (hy)pep: A — B be a natural transformation in V°, denote by h: A — B the

morphism of V such that ho f, = g, o hy for all p € P. The following equalities
hold

(Conc h)(14) = (Cone h)((Cone f,)(14,)) as f, is a morphism in V".
= (Conec gp)((Conc hyp)(14,)) as ho f, = gpohy.
= (Conc g,)(1B,) as hy, is a morphism in V.
=1p as gp is a morphism in VP,

Thus h is a morphism in VP. Therefore (2) holds.
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Let B be a finite algebra in V, it follows that 1p is compact hence B € VP.
Let P be a directed poset. Let A = (Ap, fpq | < qin P) be a diagram in V*, let
(A, fp | p € P) be a colimit cocone of Ain VP, Let h: B — A be a morphism in V.

As B is finite, there exists p € P such that h(B) C f,(4,). Let X C A, finite,
such that h(B) = f,(X). As V is locally finite C' the subalgebra of A, generated
by X is finite. Moreover h(B) = f,(C). As C is finite, there exists ¢ > p, such
that fg | (fp.q(C)) is an embedding. Thus changing p to ¢ and C to f, 4(C) we can
assume that f, [ C'is an embedding.

As C = f,(C) = h(B), there is an isomorphism k: h(B) — C such that ko f, =
idf(p), hence f, o koh = h, put b’ = ko h. Notice that:

(Cone f,)((Conc h')(1p)) = (Cone h)(1p) = 14 = (Cone f)(14,),
therefore there is ¢ > p such that:
(Cong fpqoh')(1p) = (Cong fpq)(1a,) =14,
Put " = f, 4ok, thus (Conc h")(1B) = 14,, so h” is a morphism in V". Moreover
fooh" = fgofpqoh/ =f,oh =f,0okoh=nh. O

If all congruence-bounded lattices in a variety have congruence-preserving ex-
tensions with 0 then they have congruence-preserving extensions of bigger length.

Lemma 3.4. Let V be a variety of lattices such that every countable lattices in VP
has a congruence-preserving extension in V°. Let A be a countable lattice in VP,
let a < b < cin A such that ©4(b,c) = 14. There is a congruence-preserving
extension B € V of A and t € B such that t < a.

Proof. Denote by Ag = {u,v} a two element chain with u < v, put 4; = A, put
Ay = A. Denote by fi: Ag — A1, u— b, v — ¢. Denote by fo: Ag — As, u — a,
v C.

The following construction is a special case of condensate (cf. [3, 4]). However,
in this case, the construction is simple; we give a self-contained proof.

Given an element @ = (ag, a?,a} | n € N) of Ag x AY x A} we denote:

suppd = {n € N | ay' # fi(ao) or ay # fa(ao)}.

Given a finite subset S of N we denote:
Ls={de Ay x AY x AY | supp A C S}.

Put L = |J(Ls | S is a finite subset of N). Denote by mg: L — Ay, @ — ap and
g L — Ay, @ — af} for each k € {1,2} and each n € N.
Claim 1. The lattice L is countable and belongs to V.
Proof of Claim. Let S be a finite subset of N. Notice that the restriction map
Ls — Ay x A} x A5, @ — (ag,a},ay | n € S) is an isomorphism. Hence L
is countable (as a countable union of countable lattices). Moreover the following
equality holds

ker(mo [ Ls) N (] ker(}' [ Ls) N ) ker(r} [ Ls) = Op. (3.1)

nes nes
Let @ = (u, f1(u), fo(u) | n € N), ¥ = (v, f1(v), f2(v) | n € N). Let S be a finite
subset of N. Notice that u, ¥ belong to Lg, moreover the following equalities hold

(Conmo [ Ls)(Org(t, 7)) = Oa,(u,v) = 1g,.
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It implies that
ker (g [Ls)V@LS(ﬁ,ﬂ) =1r,. (3.2)
Similarly, given k € {1,2} and n € N the following equalities hold
(Conmyy [ Ls)(OLs (@, 7)) = Oap (fr(u), fe(v)) = 1ay.
Thus we obtain
ker(my | Ls) V Or (4, V) = 11,. (3.3)
Put 6y = ker(mo | Lg), put 6} = ker(n} | Lg) for all k € {1,2} and all n € N, put

—

a = 0O, (d,7). The following equalities hold

01, (%,7) =aV (00 nern () 93) , by (3.1).
nes nes
=(aVby)Nn ﬂ (aVO?)N ﬂ (aVoy), by distributivity.
nes nes
=1, by (3.2) and (3.3).

As L =|J(Lg | S is a finite subset of N), it follows that 1;, = O (&, V) is a compact
congruence of L, hence L belongs to VP. O Claim 1.

Claim 2. Let§ € Con. L. There isn € N such that (Con. from)(0) = (Conc 7})(6)
for ke {1,2}.

Proof of Claim. We first assume that 6 is principal, there is Ei,l_; in L such that
0 = ©r(d,b). We prove that the equality holds for all n except finitely many. Let

n € N — (supp(a@) Usupp(d)), let k € {1,2}. The following equalities hold

-, -,

(Cone fr 0 m0)(OL(d, b)) = O, (fx(mk(a@)), fr(mr(b)))
= 04, (fr(ao), fx(bo))
= 04, (an, bn), as n ¢ supp(a@) U supp(b).

= O, (7}(@), 7} (D))

-,

= (Con, 7)(©(a,b))

As a compact congruence is a finite join of principal congruences the conclusion

follows. O Claim 2.

Let K € V° be a congruence-preserving extension of L. We identify Con. K and
Con. L. Denote by po: K — K/kermy and by p: K — K/kern} the canonical
projections. Denote by i} : A} < K/ker 7} the morphism induced by the inclusion
map L — K, that is the morphism such that i}} o 7} = pi. Notice that Con. i} is
an isomorphism, for all k € {1,2} and all n € N.

Put @ = (u, fi(u), fa(u) | n € N). Put § = ©x(0,7). From Claim 1 there is
n € N such that (Cong f o m)(0) = (Con. 7})(6), for all k € {1,2}.

If @ C kermp then (Conn})(0) = (Cong f1 o m9)(#) = 04,. Therefore the
following equalities hold

it (fi(w)) =i (71 (1)), by definition of 4.
= pi' (@)
=1(0)

, as 17 is induced by the inclusion map.
b

as (0,%) € ker pi' = ker 7",
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However a < b = fi(u), so if(a) < i¥(f1(uw)) = p7(0) < i(a); a contradiction. It
follows that 6 < ker pg.

Notice that (Con, foomg)(0) = (Cone 75 )(0). As 6 € ker py and Con, f> separates
0, it follows that (Con. 7%)(0) # 04,, hence:
D2

P5(0) < p3 (i) = iz (w3 (@) = iy (f2(u)) = i (a).

As i% is an isomorphism we can identify L/ker 7% with a congruence-preserving
extension of A = As, put t = p5(0), we have t < a. O

Remark 3.5. In the context of Lemma 3.4, changing B to one of its sublattices, we
can assume that B is countable (cf. [3, Lemma 3.6]).

Theorem 3.6. Let V be a variety of lattices. If each subdirectly irreducible lattice
'V has no infinite decreasing sequence then the following statements are equivalent.

(1) Each countable congruence-bounded lattice in'V has a congruence-preserving
extension in VO.

(2) Let L €V be a subdirectly irreducible lattice, let x <y in L. If Op(z,y) =
1, then x = 0.

(3) Let LeV, letx <y in L. If Op(x,y) =11 then x = 0.

(4) The category VP is a subcategory of V°.

Proof. The implication (4) = (1) is immediate.

Assume that (1) holds and (2) fails. There is a subdirectly irreducible lattice
L €V and elements a < b < ¢ in L such that ©(b,¢) = 11. Changing L to one of
its sublattice we can assume that L is countable. Put Ly = L and ag = a.

Let n > 0. Assume that we have constructed a sequence (L;);<, of countable
lattices and a sequence (a;);<y such that a; € L;, the lattice L;; is a congruence-
preserving extension of L;, and a;11 < a;, for all i <n — 1.

Notice that an—1 < a9 = a < b < ¢. By Lemma 3.4 there is a congruence-
preserving extension L., of L,_; and a, € L, such that a, < a,_1. Moreover by
Remark 3.5 we can assume that L,, is countable. Hence we construct by induction
a sequence (L;);<, of countable lattices and a sequence (a;);<. such that a; € L;,
the lattice L;41 is a congruence-preserving extension of L;, and a;41 < a;, for all
1< w.

Put K = Un <w Li, as Con, preserves directed colimits it follows that Conc K =
Con, Ly therefore K is subdirectly irreducible, moreover the a;s form an infinite
decreasing sequence; a contradiction.

Assume that (2) is satisfied, let L € V| let z < y in L such that O (z,y) = 1r.
Let o € M(Con L), then L/« is subdirectly irreducible, moreover O /o (z/c, y/a) =
17/q, so it follows from (2) that z/a = 0.

Thus z/a = 0 for all @ € M(Con L), however (| M(Con L) = 0y, hence z = 0.
Therefore (2) = (3). Assume that (3) holds, let L in V| there are z,y in L such
that O (z,y) = 1, it follows from (3) that L has 0. Let f: K — L be a morphism
in VP, there are x,y in K such that O (x,y) = 1x. The following equalities hold:

OL(f(@), f(y)) = (Con f)(Ok (x,y)) = (Conc f)(1k) = 1L.
Therefore, from (3) we obtain f(0) = f(z) = 0, therefore f is a morphism in V°. O

Remark 3.7. There are lattices without any congruence-preserving extension with 0
(in any variety of lattices). For example consider an infinite chain A = {z¢ > z; >



CONGRUENCE-BOUNDED LATTICES 7

9 > ...}. Notice that Con. A has no largest element. Let B be a congruence-
preserving extension of A with 0, we identify Con A and Con B. The containment
Op5(0,z9) 2 Op(zk,zo) holds for all k < w. Therefore 15 2 Op(0,20) D14 =1p
hence 15 = ©p5(0, ) is compact; a contradiction.

The following corollary is an immediate consequence of Theorem 3.6 and its dual.

Corollary 3.8. Let V be a variety of lattices. If each subdirectly irreducible lattices
iV has no infinite chain then the following statements are equivalent.

(1) Each countable lattice in V° has a congruence-preserving extension in VOt

(2) Let L €V be a subdirectly irreducible lattice, let x <y in L. If Or(z,y) =
1, thenx =0 and y = 1.

(3) The equality VP = V%1 holds (the two categories have the same objects and
the same morphisms).

Example 3.9. Denote by Mj the variety of lattices generated by M3 (see Figure 1).
Notice that © g, (x,1) = 1az,, so Mg fails the condition Theorem 3.6(2) hence there
is a congruence-bounded lattice L in M3 with no congruence-preserving extension
with 0 in Ms.

Denote by N5 the variety of lattices generated by N5 (see Figure 1). The sub-
directly irreducible lattices of N5 are, up to isomorphisms, N5 and 2, they satisfy
both the condition Corollary 3.8(2). Therefore each congruence-bounded lattice
in N5 has 0 and 1.

FIGURE 1. The lattices M3 and Nj.

4. A FUNCTOR

The goal of this section is to construct a functor ¥: MP — M%! preserving
colimits and such that Con, oW is naturally equivalent to Cone.

The following Lemma expresses that an interval of a quotient of a lattice is a
quotient of an interval (we identify a quotient of a sublattice with a sublattice of a
quotient).

Lemma 4.1. Let a < b in a lattice L, let 0 € Con L, then [a,b]r/0 = [a/0,0/0]1 /6.



8 P. GILLIBERT

Proof. Let x € [a,b]/0, there is y € [a,b]r such that y/0 = z, thus a/0 < y/6 =
x < b/0, therefore x € [a/0,0/0], /¢

Let x € [a/0,b/0]1 ¢, there is y € L such that y/0 = z. Put ¢ = (y Va)Ab,
then a <y’ <b, and y'/0 = (y/0 V a/0) ANb/O = z, therefore x € [a,b]1 /0. O

Remark 4.2. Let K be a simple lattice in M,,, let 2 < y in K. The lattice [z, y]x
is simple.

Lemma 4.3. Let K be a simple lattice in M, let x < y in K, let u < v and
u' <o in [z, ylk. If Ok (u,v) = Ok (u,v") then O . (u,v) = Oy 4, (v, V")

Proof. As Ok (u,v) = O (u',v") it follows that u = v if and only if u’ = v'.
If u = v then Oy, (1,v) = 04, = Oy (W, V). If u# v, as [z,y]k is
simple (cf. Remark 4.2), it follows that O, 1, (u,v) = 1z y1,c = Oay) (W', 0"). O

Remark 4.4. Let L be a finite modular lattice then Con L is a Boolean semilattice,
moreover the atoms of Con L are the congruences of the form ©p(u,v) for u < v
in L.

Lemma 4.5. Let L be a finite lattice in M, let x <y in L. Denote by f: [x,y]r—
L the inclusion map. The restriction Con f: Conlz,y]r, — ConL | O (x,y) is an
isomorphism.

Proof. Put A = [z,y]r, as A and L are both finite modular lattices, it follows that
Con A and Con L are finite Boolean semilattice.

Let 0 be an atom of Con A. By Remark 4.4 there are u < v in A such that
0 = ©4(u,v), however u < v in L, it follows from Remark 4.4 that O (u,v) is an
atom of Con L. Thus (Con f)(#) = O (u,v) is an atom of Con L.

The following equalities hold

As Con L is a Boolean semilattice and (Con f)(At(Con A)) C At(Con L), it follows
that (Con f)(At(Con A)) = At(Con L | O (x,y)). Therefore the restriction of Con f
is surjective.

To prove that Con f is one-to-one we just have to prove that (Con f) [ At(Con L)
is one-to-one. Let o, 5 € At(ConL). Assume that (Con f)(a) = (Con f)(5). Let
u < v in A such that @ = O4(u,v), let v/ < v' in A such that § = O4(u/,v’).
Notice that ©r(u,v) = (Con f)(a) = (Con f)(8) = O (v, ).

Let 6 € M(ConlL). If z/0 = y/0, then u/0 = v/0 = u'/6 = v/, hence
©4s0(u/0,v/0) = O .4/9(u'/0,0'/0).

Now we assume that /0 < y/6. By Lemma 4.1, A/0 is an interval in L/6. Notice
that ©r/9(u/0,v/0) = O 9(u'/0,v"/0), moreover L/0 is simple (see Remark 4.4),
therefore Lemma 4.3 implies that © 4,9(u/0,v/0) = ©4,9(u'/0,v"/0). Thus the
following equality holds

Oa(u,v) V(0N A?) =0 (u',v") v (N A?), for each § € M(Con L).

However M (Con L) is finite, Con A is distributive and A M (Con L) = 0r, hence
a=04(u,v) =04(u,v") = 5. Therefore Con, f is one-to-one. O
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The following corollary is an immediate consequence of Lemma 4.5.

Corollary 4.6. Let L be a finite lattice in M, let a < b < ¢ < d in L such that
Or(b,c) =Or(a,d). Then O, q), (b,c) = 1[4.q, -

Remark 4.7. Denote by M3 3 the variety of lattices generated by Ms 3, see Figure 2.
Corollary 4.6 cannot be generalized for M3 3. We have Oy, ,(b,c) = 1, and

@[a,d] (b7 C) 7& 1[a,d] .

l=c=d

al a

0 0

FIGURE 2. The lattices M, and Ms 3.

The following result appears in [5, Theorem 10.4]. It gives a description of finitely
generated congruences of general algebra.

Lemma 4.8. Let B be an algebra, let m be a positive integer, let x,y € B, and
let @,y be m-tuples of B. Then ©p(x,y) < \/,_. Op(x;,vy;) if and only if there are

<m
a positive integer n, a list Z' of parameters from B, and terms tq, ..., t, such that
x = to(Z, Y, 2),
y = tn (7,9, 2),
ti(¢,%,2) = tj1(T,9,2)  (for all j < n).

It follows from Lemma 4.8 that if two finitely generated congruences are compa-
rable in a locally finite algebra, then there is a “reason” in a finite subalgebra.

Corollary 4.9. Let B be a locally finite algebra, let m be a positive integer, let X
be a finite subset of B, let x,y € X, and let &,y be m-tuples of X, if Op(x,y) <
Viem ©B(xi,yi), then there is a finite subalgebra C' of B such that X C C and
@C(.’E, y) < \/i<m @C(xia yz)

Lemma 4.10. Let L € MP. Let x < y in L such that O (x,y) = 11,. Denote by P
the set of all finite sublattice A of L such that x,y € A and ©4(x,y) = La. The
following statement are satisfied

(1) Let X be a finite subset of L, there is A € P such that X C A.
(2) The poset (P,C) is directed.
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Proof. Let X be a finite subset of L, we can assume that z,y € X. Put a = A X,
put b = \/ X, hence a < z < y < b. Notice that ©1(a,b) = Op(z,y) = 1. It
follows from Corollary 4.9 that there exists a finite sublattice A of L such that
X C A and O 4(a,b) C O4(x,y). However a < x <y < bso O4(a,b) = Os(z,y).
It follows from Corollary 4.6 that Oq ), (2,¥) = 1{ap)4-

Put B = [a,b]a. Notice that X C B and ©p(z,y) = 1p, therefore B belongs
to P. Hence (1) holds.

The statement (2) follows from (1). O

From Lemma 4.10 and Lemma 3.3 we obtain the following corollary.

Corollary 4.11. Let n < w. Ewvery lattice in M> is a directed colimit of finite
lattices in M. The finitely presented objects in M are the finite lattices in MP.

Each lattice in MP has a bounded congruence-preserving sublattice. It is a
generalization of Lemma 4.5 in the infinite case.

Corollary 4.12. Let L € MP. Let x < y in L such that 11, = O(z,y). Denote
by f: [x,y]r — L the inclusion map, then Con. f is an isomorphism.

Proof. Denote by P the set of all finite sublattice A of L, such that z,y € A and
O4(z,y) = 14. Lemma 4.10 implies that (P,C) is a directed poset, moreover

L =Jecp A It follows that [z,y]r = Uscple, y)a.

Denote by fa: [z,y]la — A the inclusion map. As ©4(z,y) = 14, it follows
from Lemma 4.5 that Con f4: Con[z,y]a — Con A is an isomorphism, for all
A € P. Moreover f = |J,cp fa. Therefore Con f = lim Con f4, but Con f4 is an
isomorphism for all A € P, therefore Con f is an isomorphism. O

Corollary 4.12 extends to diagrams indexed by poset with 0.

Corollary 4.13. Let P be a poset with 0. Let A = (Ap, fog | P < g in P) be
a diagram in MP. Let x < y in Ay such that 14, = Oa,(2,y). Put B, =
[fo.p(x), fop(y)]a,, denote by t,: B,— A, the inclusion map, denote by g, q: B, —
B, the restriction of fpq, for allp < q in P. Put B = (Bp,9p,q | 0 < qin P), it is
a diagram in M%1. The family (t,)pep is a natural transformation from B to A.
Moreover (Congty,)pep is a natural equivalence.

Remark 4.14. The Corollary 4.13 cannot be extended to diagrams indexed by ar-
bitrary poset. We consider the sublattices Ag = {0,2} and 4; = {z,1} of M3 (see
Figure 1). The three lattices Ag, A;, M3 form a diagram A of MY under inclusion.
. P . . . . 0,1
The diagram A is not a congruence-preserving extension of any diagram in Mg".

The following Lemma is proved in [3, Lemma 8.1].

Lemma 4.15. Let A be a finite algebra with Con A distributive, let o € Con A,
and put Q@ = {0 € M(Con A) | a £ 0}. If all A/O, for 6 € Q, are simple, then the
canonical map Con A — Con(A/a) x [[ycq Con(A/0) is an isomorphism.

Notation 4.16. Let 3 < n < w, we denote by MET the full subcategory of MB in
which objects are the finite lattices in MP.

Remark 4.17. Let f: A — B a morphism of distributive lattices. If (Con. f)(14) =
1p, then f is a 0, 1-homomorphism.
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Lemma 4.18. There is a functor ¥: MPT — MY such that Con. oWV is naturally
equivalent to Con,.

Proof. Let A € M, be a finite lattice, we denote by a 4 the smallest congruence of A
such that A/a4 is distributive. Denote Q4 = {6 € M(Con A) | asa £ 0}. Notice
that if 8 € Qa, then A/ is simple and not distributive, thus A/8 € {M}, |3 <k <
w}. Denote Ry = {aa} UQa4. Denote Sq ={0 € ConA |0 D aysorbc Ry}

Put U(A) = [[5cg, A/B. Denote by ta: A — V(A), x — (z/B)ser,. Put
&4 = Conty, by Lemma 4.15 the map €4 is an isomorphism.

Given 0 € S4, we denote

Pt W(A) — A/

UQ/Q if 6 € Ry.
Ua )0 0D .

(up/B)peras — {

Given 0 C v in Sy, we denote by pg‘ﬂ: A/0 — A/~ the canonical projection. The
following equality is immediate:

pgl’,yopg1 :p?, for all O v in Sy. (4.1)

Given 6 in S 4, we denote by 7r§‘ : A— A/0 the canonical projection. The following
equality holds

piota=my, forallde Sa. (4.2)

Claim. Let f: A — B be a morphism in M2, Let 8 € Sp. The following statement
are satisfied

(1) f71(B) € Sa.
(2) If the map A/ f~Y(B8) — B/B induced by f does not preserve bounds, then
B €Qp and A/ f~1(B) is the two-element chain.

Proof of Claim. Denote by g: A/f~1(3)— B//3 the morphism induced by f. Notice
that g is a morphism in MPT.

If 3 D ap, then B/f is distributive, hence A/f~1(3) is distributive. It follows
from Remark 4.17 that g is a 0, 1-homomorphism. Moreover f~1(3) D a4, therefore
f7H(B) € Sa.

Assume that 3 2 ap, it follows that 8 € Qp. If f~1(8) 2 aa, then A/f~1(3)
is not distributive, however A/f~1(8) embeds into B/3 € {M, | 3 < k < w},
therefore A/f~1(3) is simple. It follows that f~1(3) € Q4.

Assume that 8 2 ap and A/f~1(3) is not a two-element chain. Notice that
A/f~Y(B) has at least three elements. As B/3 € {My | 3 < k < w} and g is an
embedding, it follows that A/f~1(3) belongs (up to isomorphism) to {Mj | 3 <
k<w}u{3,22}.

As the length of B/f is two and the length of all lattices in {Mj, | 3 < k <
w} U {3,22} is two, it follows that g is a 0, 1-homomorphism. O Claim.

Let f: A— B. Let 8 € Sg. If A/f~%(3) is not a two-element chain or 3 € Qp,
we denote by fz: A/f~1(3) — B/B3 the morphism induced by f. It follows from
the claim that f is a 0, 1-homomorphism.

If A/f~(B) is a two-element chain and 3 € Qp, we denote by fz: A/f~1(5) —
B/ the only 0, 1-homomorphism.
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Let v O 6 D ap in Con B. Notice that 6,y € Qp, hence fo: A/f~1(0) — B/0 is
the map induced by f and f,: A/f~1(y) — B/v is the map induced by f. Thus
the following equality holds

pﬁﬂ{ ofo=1[y Opj}*l(G),f*l(V)’ for all v 2 0 O ap in Con B. (4.3)
‘We denote
U(f): ¥(A) — ¥(B)
U= (fﬁ(p?fl(g) (u)))sers
Notice that

pF o W(f) = fo opj},l(e), for each # € Qp. (4.4)
Let 6 O ap, the following equalities hold

g ©U(f) = D50 © Pay © U(F), by (4.1).

=800 fan ©PF1(ap); by (4.4).

= [0 0 PF1(ap).£1(0) P11 (ap): by (4.3).

ZfGOP?—l(g), by (4.1).

It follows that

pF o U(f) = fo op?,l(e), for each 0 € Sp. (4.5)

Let f: A — B and g: B — C be morphisms in MPT. Let v € So. As-
sume that A/f~*(g~'(y)) is not a two-element chain. As A/f~1(g~'(y)) em-
beds into B/g~!(v) it follows that B/g~!(v) is not a two-element chain. Thus
fo-10: A/f g™ (7)) — B/g~*(v) is the morphism induced by f, similarly g, is
induced by g, and (g o f), is induced by g o f, therefore (go f), = g, 0 fg-1(-

Assume that A/f~1(g7*(v)) is a two-element chain. Notice that both (g o f),
and g, o fy-1(,) preserve bounds, however there is a unique 0, 1-homomorphism
A/f~ (g7 1(vy)) — C/v. Therefore the following equality holds

(go f)y =9gyo fg-1(y), forallye Sc. (4.6)
Let v € S¢. The following equalities hold
pgolp(gof):(gof)’yop?—l(g—l(ry))a by (4.5)
=9y 0 fg-1(9) Op?*(g*l(v))’ by (4.6).
:g’Yopr—l(fy) o W(f), by (4.5)
= 0 U(g) 0 U(f), by (4.5).

Thus W(go f) = ¥(g) o ¥(f). Moreover it is easy to prove that ¥(id4) = idy(a)
for all A in MBT. Therefore ¥ is a functor.

Let f: A — B be a morphism in MET. Denote by g: A/f~1(y) — B/y the
morphism induced by f. Notice that g is a morphism in MPT. Let v € Sc. The
following equalities hold

pfo‘l/(f)otA:fvop?,l(v)otm by (4.5).
= f,yo7rl‘;‘_1(7), by (4.2).
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The following equalities hold
pf otpo f= 7T§ o f, by (4.2).
=go ’/T?_l(,y), as ¢ is induced by f.

If A/f~*(v) is not a two-element chain then the map f, is induced by f, hence
g = fv, thus Con f, = Con g.

Assume that A/f~!(y) is a two-element chain. Both map Con f, and Cong
are (V,0,1)-homomorphism, however there is only one (V,0,1)-homomorphism
Con A/f~!(y) — Con B/~, thus Con f, = Cong. Therefore the following equality
holds

(Conpf) o (ConV(f))ols = (Conpf) oépo(Conf), forallye Rp

It implies that (Con W(f)) o0& = &g o (Con f). Thus (€4 | A € MET) is a natural
equivalence. ([

Corollary 4.19. Let n > 3. There exists a functor W: MP — M%1 preserving
colimits and such that Cone oV is naturally equivalent to Cong.

Proof. Let W: MPT — M%! be the functor constructed in Lemma 4.18, such that
Con oV is naturally equivalent to Cone.
The following statements hold.

(1) The category MPT is a full subcategory of finitely presented objects in MP
(cf. Lemma 3.3(3)).

(2) The category M%! has all small directed colimits.

(3) All objects in MP is a small directed colimits of objects in MET (cf. Corol-
lary 4.11).

(4) The category MP has all small hom-sets.

It follows from [4, Proposition 1-4.2] that there exists a functor W: MP — M%!
such that ¥ | MPT = ¥ and W preserves all small directed colimits.

Denote by 8 the category of (V,0,1)-semilattice with (V,0,1)-homomorphism.
The category 8 has all small directed colimits. Both functors Con. oW: MP — § and
Con,: JV[E; — § preserve all small directed colimits and Cong oW [M}‘LT = Con, oV =
Con, [MPT. Therefore it follows from the uniqueness (cf. [4, Remark 1-4.5]) that
Cong o¥ = Con,.. O
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