
CRITICAL POINTS OF PAIRS OF VARIETIES OF ALGEBRAS

PIERRE GILLIBERT

Abstract. For a class V of algebras, denote by Conc V the class of all (∨, 0)-
semilattices isomorphic to the semilattice Conc A of all compact congruences
of A, for some A in V. For classes V1 and V2 of algebras, we denote by
crit(V1;V2) the smallest cardinality of a (∨, 0)-semilattice in Conc V1 which
is not in Conc V2 if it exists, ∞ otherwise. We prove a general theorem,
with categorical flavor, that implies that for all finitely generated congruence-
distributive varieties V1 and V2, crit(V1; V2) is either finite, or ℵn for some
natural number n, or ∞. We also find two finitely generated modular lattice
varieties V1 and V2 such that crit(V1;V2) = ℵ1, thus answering a question by
J. Tůma and F. Wehrung.

1. Introduction

We denote by ConA (resp., ConcA) the lattice (resp., (∨, 0)-semilattice) of
all congruences (resp., compact congruences) of an algebra A. For a homomor-
phism f : A → B of algebras, we denote by Con f the map from ConA to ConB
defined by the rule

(Con f)(α) = congruence of B generated by {(f(x), f(y)) | (x, y) ∈ α},

for every α ∈ ConA. We also denote by Conc f the restriction of Con f from ConcA
to ConcB. This defines a functor Conc from the category of algebras of a fixed
similarity type to the category of all (∨, 0)-semilattices, moreover Conc preserves
direct limits.

A lifting of a (∨, 0)-semilattice S is an algebra A such that ConcA ∼= S. Given
a variety V of algebras, the compact congruence class of V, denoted by Conc V, is
the class of all (∨, 0)-semilattices isomorphic to ConcA for some A ∈ V. As illus-
trated by [7], even the compact congruence classes of small varieties are complicated
objects.

Let V be a variety of algebras, let D be a diagram of (∨, 0)-semilattices and
(∨, 0)-homomorphisms. A lifting of D in V is a diagram A of V such that the
composite Conc ◦A is naturally isomorphic to D.

To a poset I and a diagram ~S = (Si, ϕ
j
i )i≤j in I of (∨, 0)-semilattices, we shall

associate a (∨, 0)-semilattice C, which is a subdirect product of the Sis.
We shall establish a set of results that can be loosely summed up as follows:
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In the ‘good cases’, if C has a lifting in V, then ~S has a lifting in V;

and conversely.

The (∨, 0)-semilattice C is not defined from ~S alone, but from what we shall call a
norm-covering of I (Definition 4.4). By definition, a norm-covering of I is a pair
(U, |·|), where U is a so-called supported poset (Definition 4.1) and |·| : U → I is

an isotone map. We shall write C = Cond(~S, U), and call C a condensate of ~S

(cf. Section 5). The assignment ~S 7→ Cond(~S, U) can be naturally extended to a
functor.

Among the above-mentioned ‘good’ cases is the case where I is a well-founded

tree (i.e., all principal lower subsets are well-founded chains). Hence we can as-
sociate liftings of (∨, 0)-semilattices with liftings of diagrams of (∨, 0)-semilattices
indexed by trees (Corollary 7.3). By iterating this result finitely many times, we ob-
tain similar results for diagrams indexed by finite products of trees (Corollary 7.4).
In particular (cf. Corollary 7.9), that if all (∨, 0)-semilattices of a ‘good’ class of
(∨, 0)-semilattices S have a lifting in a variety V, then every diagram of S, indexed
by finite products of well-founded trees, has a lifting in V. In particular, using the
result, proved by W. A. Lampe in [3], that every (∨, 0, 1)-semilattice is isomorphic

to ConcG for some groupoid G, we prove in Corollary 7.10 that every diagram of

(∨, 0, 1)-semilattices and (∨, 0, 1)-homomorphisms, indexed by a finite poset, has a

lifting in the variety of groupoids. This extends to all finite poset-indexed diagrams
the result, proved in [4] for one zero-separating arrow, of simultaneous representa-
tion.

Funayama and Nakayama proved in [1] that Conc L is distributive for any lat-
tice L. However, our result above cannot be extended to (∨, 0, 1)-semilattices re-
placed by distributive (∨, 0, 1)-semilattices and groupoids replaced by lattices. This
is due to the negative solution to the Congruence Lattice Problem, obtained by
F. Wehrung in [10], that gives a distributive (∨, 0, 1)-semilattice that is not isomor-
phic to Conc L for any lattice L.

A somehow strange, but unavoidable, feature of our proof is that the condensate
construction builds objects of larger cardinality. For example, in order to be able to
lift diagrams indexed by (at most) countable chains of (at most) countable (∨, 0)-
semilattices, we need to be able to lift (∨, 0)-semilattices of cardinality ℵ1.

Another interesting problem is the comparison of congruence classes of varieties
of algebras. Given two varieties V1 and V2 of algebras, the critical point of V1

and V2, denoted by crit(V1; V2), is the smallest cardinality of a (∨, 0)-semilattice
in Conc(V1) − Conc(V2) if it exists, or ∞, otherwise (i.e., if Conc V1 ⊆ Conc V2).
Denote by Mn the lattice of length two with n atoms and by M0,1

n the variety of
bounded lattices generated byMn, for any positive integer n. M. Ploščica gives in [6]
a characterization of (∨, 0, 1)-semilattices of cardinality ℵ1 in Conc M0,1

n , and he
proves that the result is independent of n. Moreover, M. Ploščica also proves in [5]

that if we denote by L the free lattice of M
0,1
n+1 with ℵ2 generators, then Conc L has

no lifting in M0,1
n . (M. Ploščica proves his results for varieties of bounded lattices,

but for those negative results the difference between bounded and unbounded is
inessential.) This implies that crit(M0,1

m ; M0,1
n ) = ℵ2 for all integers m > n ≥ 3.

One corollary of our main result is that if the critical point between two vari-
eties V1 and V2 of algebras with countable similarity types is greater than ℵn, then
all diagrams of countable (∨, 0)-semilattices indexed by products of n finite chains
which are liftable in V1 are also liftable in V2.
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In Corollary 7.14 we prove that the critical point between a locally finite variety
and a finitely generated congruence-distributive variety is either finite, or ℵn for
some natural number n, or∞. Moreover in Section 8 we give two finitely generated
varieties of modular lattices with critical point ℵ1, which solves negatively Prob-
lem 5 in [8]. However, we still do not know whether there exists a pair of varieties
of lattices with critical point ℵn with n ≥ 3.

2. Basic concepts

We denote by dom f the domain of any function f . We write P(X) the set of
all subsets of X and [X ]<ω the set of all finite subsets of X , for every set X . We
denote by κ+ the cardinal successor of κ and κ+n the nth successor of κ, and we
denote cf κ the cofinality of κ, for every cardinal κ.

A poset is a partially ordered set. We denote by P− (resp., P=) the set of all
non-minimal (resp., non-maximal) elements in a poset P . For i, j ∈ P let i ≺ j
hold, if i < j and there is no k ∈ P with i < k < j, in this case i is called a lower

cover of j. If j has exactly one lower cover, we denote it by j∗. We put

Q ↓X = {p ∈ Q | (∃x ∈ X)(p ≤ x)}, Q ↑X = {p ∈ Q | (∃x ∈ X)(p ≥ x)},

for any X,Q ⊆ P , and we will write ↓X (resp., ↑X) instead of P ↓X (resp., P ↑X)
in case P is understood. We shall also write ↓p instead of ↓{p}, and so on, for
p ∈ P . A poset I is lower finite, if I ↓ i is finite for all i ∈ I. A subset X of P
is a lower subset if P ↓ X = X . An ideal of P is a nonempty, upward directed,
lower subset of P . We denote by IdP the set of all ideals of P , partially ordered
by inclusion. We will often identify a with P ↓ a, where a ∈ P , and identify P
with {P ↓ a | a ∈ P} ⊆ IdP . A tree is a poset T with a smallest element such
that T ↓ t is a chain for each t ∈ T . We denote by M(L) the set of all completely
meet-irreducible elements in a lattice L.

For an algebra A and P ⊆ A2, denote by ΘA(P ) the smallest congruence of A
that contains P . We put ΘA(x, y) = ΘA({(x, y)}), for all x, y ∈ A. Let X ⊆ A

we denote by Conc
X(A) = {ΘA(P ) | P ∈ [X2]<ω} the set of all congruences of A

finitely generated by parameters in X .
Let (Ai)i∈I be a family of algebras of the same similarity type, let (θi)i∈I ∈

(ConAi)
I ; the congruence product of (θi)i∈I is the congruence defined by:

∏

i∈I

θi =



(x, y) ∈

(
∏

i∈I

Ai

)2

| ∀i ∈ I, (xi, yi) ∈ θi



 .

We denote by x/θ the equivalence class of x modulo θ, where θ is an equivalence
relation on a set A and x ∈ A. We shall often write X/θ = {x/θ | x ∈ X}, for
any subset X of A. The canonical embedding from X/(θ ∩ (X × X)) into A/θ
sends x/(θ ∩ (X × X)) to x/θ, for each x ∈ X . We shall often identify X/θ and
X/(θ ∩ (X ×X)).

For a category C, we write Ob C the class of all objects of C and MorC the class
of all morphisms in C.

For categories I and J , denote by JI the category whose objects are the functors
from I to J and whose arrows are the natural transformations. Let I, J , and S be
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categories, let D : J → SI be a functor. We can define a functor:

D̂ : I × J → S

(i, j) 7→ D(j)(i) for all (i, j) ∈ Ob(I × J)

(f, g) 7→ D(g)i′ ◦D(j)(f) for all (f : i→ i′, g : j → j′) ∈ Mor(I × J),

where D(g) = (D(g)k)k∈Ob I . Conversely, given a functor D : I × J → S, we can

define a functor D̃ : J → SI by:

D̃(j) : I → S

i 7→ D(i, j), for all i ∈ Ob I

f 7→ D(f, idj), for all f ∈Mor I

which is a functor, for all j ∈ ObJ , and

D̃(g) = (D(idi, g))i∈Ob I : D̃(j)→ D̃(k)

which is a natural transformation, for all (g : j → k) ∈MorJ .
We shall identify every poset P with the category whose objects are the elements

of P , and that has exactly one arrow, then denoted by (i ≤ j), from i to j, just in
case i ≤ j in P .

Let S be a class of (∨, 0)-semilattices, let V be a class of algebras of the same
similarity type, let J be a category. A lifting in V of a functor D : J → S is a
functor A : J → V such there exists a natural isomorphism Conc ◦A → D. In this
case we say that A is a lifting of D in V.

Let J be a category. We put iE j, if there exists an arrow f : i→ j of J , for all
i and j in ObJ . This relation is reflexive and transitive.

Let I and S be categories, let D : I → S be a functor. We denote by lim
−→

D a
colimit of D if it exists. Strictly speaking, it is a cocone of S, however, we often
identify it with its underlying object in S. Similarly, if all colimits indexed by I
exist, we consider lim

−→
: SI → S as a functor. Colimits indexed by upwards directed

posets are often called direct limits.
It is well-known that any variety of algebras, viewed as a category, has all small

colimits (small here means that the index category is small).
A variety of algebras is congruence-distributive if each of its members has a

distributive congruence lattice.

3. A Löwenheim-Skolem type property

Definition 3.1. Let U be a poset, let J be a small category, and ~κ = (κu)u∈U be
a family of cardinals. A class V of algebras of the same similarity type is (U, J,~κ)-

Löwenheim-Skolem, if for any functor A : J → V and for any family (αju)
j∈Ob J
u∈U of

congruences, with αju ∈ Con A(j), such that
∑

j∈Ob J cardConc(A(j)/αju) < κu for

all u ∈ U , there exists a family (Bju)
j∈Ob J
u∈U of algebras such that:

(1) The algebra Bju is a subalgebra of A(j) for all u ∈ U and all j ∈ ObJ .
(2) The algebra Bju/α

j
u belongs to V for all u ∈ U and all j ∈ ObJ .

(3) The containment Bju ⊆ B
j
v holds for all u ≤ v in U and all j ∈ ObJ .

(4) The containment A(f)(Bju) ⊆ Bku holds for every u ∈ U and every mor-
phism f : j → k in J .

(5) The morphism Con(qju) is an isomorphism, where qju denotes the canonical
embedding Bju/α

j
u →֒A(j)/αju.
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(6) The inequality
∑

j∈Ob J cardBju < κu holds for all u ∈ U .

The following result appears in [2, Theorem 10.4].

Lemma 3.2. ΘB(x, y) ≤
∨
i<m ΘB(xi, yi) iff there are a positive integer n, a list

~z of parameters from B, and terms t1, . . . , tn such that

x = t1(~x, ~y, ~z),

y = tn(~x, ~y, ~z),

tj(~y, ~x, ~z) = tj+1(~x, ~y, ~z) (for all j < n).

Definition 3.3. Let κ be a cardinal. An algebra is locally < κ if every finitely
generated subalgebra is of cardinality < κ. The definition of locally ≤ κ is similar.
An algebra is locally finite if it is locally < ℵ0.

A variety of algebras is locally < κ (resp., locally ≤ κ) if all its members are
locally < κ (resp., locally ≤ κ).

Remark 3.4. Let L be a similarity type. Every L -algebra is locally ≤ cardL .
Let κ be a cardinal, let L ⊆ L ′ be similarity types, let (E,L ′) be an algebra such
that (E,L ) is locally ≤ κ, then (E,L ′) is locally ≤ κ+ card(L ′ −L ).

Let κ be a cardinal. If E is a locally ≤ κ algebra, then every subalgebra of E,
generated by at most κ elements, has at most κ elements.

The following lemma is proved using an argument similar to the one in the usual
proof of the Löwenheim-Skolem Theorem.

Lemma 3.5. Let L be a similarity type. Let E be a L -algebra, let Q ⊆ E. Let

(Li)i∈I be a family of sub-similarity types of L . Let κ be an infinite cardinal. If

(E,L ) is locally ≤ κ, then there exists a subalgebra (F,L ) of (E,L ) such that:

(1) The containment Q ⊆ F is satisfied,

(2) The inequality cardF ≤ κ+ cardQ+ card I holds,

(3) The morphism Conc qi : Conc(F,Li) → Conc(E,Li) is one-to-one, where

qi : (F,Li)→ (E,Li) denotes the inclusion map, for all i ∈ I.

Proof. Let A0 be the subalgebra of (E,L ) generated by Q. As E is locally ≤ κ,
we have cardA0 ≤ κ + cardQ. Let n < ω. Assume that we have constructed
subalgebras A0 ⊆ · · · ⊆ An of (E,L ) of cardinality at most κ + cardQ + card I,
such that for all 0 ≤ u < v ≤ n, for all i ∈ I, for all m ∈ N, for all x, y, x1, . . . , xm,
y1, . . . , ym in Au we have the following equivalence

Θ(E,Li)(x, y) ≤
∨

1≤k≤m

Θ(E,Li)(xk, yk) ⇐⇒ Θ(Av ,Li)(x, y) ≤
∨

1≤k≤m

Θ(Av,Li)(xk, yk).

Let i ∈ I. Let x, y, x1, . . . , xm, y1, . . . , ym in Xn, such that the inequality

Θ(E,Li)(x, y) ≤
∨

1≤k≤m

Θ(E,Li)(xk, yk) is satisfied. (3.1)

Lemma 3.2 implies that there are a positive integer r, a list ~z of parameters from E,
and terms t1, . . . , tr such that

x = t1(~x, ~y, ~z),

y = tr(~x, ~y, ~z),

tj(~y, ~x, ~z) = tj+1(~x, ~y, ~z) (for all j < r). (3.2)
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So we can construct X ⊆ E such that An ⊆ X , cardX ≤ cardAn + card I + κ and
for all i ∈ I and all x, y, x1, . . . , xm, y1, . . . , ym in Xn that satisfy (3.1), there are
a positive integer r, a list ~z of parameters from X and terms t1, . . . , tr that satisfy
(3.2). Let An+1 be the subalgebra of (E,L ) generated by X . As (E,L ) is locally
≤ κ, we have cardAn+1 ≤ cardX+κ ≤ cardAn+card I +κ ≤ κ+cardQ+card I.
Moreover, by construction, our induction hypothesis is satisfied.

So there exists a sequence (An)n<ω of subalgebras (E,L ) of cardinality at most
κ+ cardQ+ card I such that for all 0 < u < v, for all i ∈ I, for all m ∈ N, for all
x, y, x1, . . . , xm, y1, . . . , ym in Au the following equivalence holds:

Θ(E,Li)(x, y) ≤
∨

1≤k≤m

Θ(E,Li)(xk, yk) ⇐⇒ Θ(Av ,Li)(x, y) ≤
∨

1≤k≤m

Θ(Av,Li)(xk, yk).

Put F =
⋃
n<ω An, we have Q ⊆ A0 ⊆ F and cardF ≤

∑
n<ω cardAn ≤ κ +

cardQ+ card I. It is easy to check that for all i ∈ I and for all m ∈ N, for all x, y,
x1, . . . , xm, y1, . . . , ym in F the following equivalence holds:

Θ(E,Li)(x, y) ≤
∨

1≤k≤m

Θ(E,Li)(xk, yk) ⇐⇒ Θ(F,Li)(x, y) ≤
∨

1≤k≤m

Θ(F,Li)(xk, yk).

Thus the morphism Conc qi : Conc(F,Li)→ Conc(E,Li) is one-to-one. �

The following lemma is a generalization of the Löwenheim-Skolem theorem to
diagrams of algebras.

Lemma 3.6. Let κ be a cardinal. Let L be a similarity type, let V be a variety of

L -algebras locally ≤ κ, let J be a small category, let A : J → V be a functor, let αj
be a congruence of A(j), and let Qj be a subset of A(j) for all j ∈ ObJ . Then

there exists a family (Bj)j∈Ob J of algebras such that:

(1) The algebra Bj is a subalgebra of A(j) for all j ∈ ObJ .

(2) The containment A(f)(Bj) ⊆ Bk holds for every arrow f : j → k of J .

(3) The morphism Con(qj) is an isomorphism, where qj denotes the canonical

embedding Bj/αj →֒A(j)/αj, for all j ∈ ObJ .

(4) The following inequality holds:

cardBj ≤ κ+cardMor(J↾j)+
∑

iEj

(
cardConc(A(i)/αi)+cardQi

)
, for all j ∈ ObJ ,

where J ↾ j denotes the full subcategory of J with {i ∈ ObJ | iE j} as class

of objects.

(5) The containment Qj ⊆ Bj holds for all j ∈ ObJ .

Proof. Let (Q′
j)j∈Ob J be a family of sets such that:

(1) The set Q′
j is a subset of A(j).

(2) The equality Conc(A(j)/αj) = Conc
Q′

j/αj (A(j)/αj) holds.
(3) The inequality cardQ′

j ≤ ℵ0 + cardConc(A(j)/αj) + cardQj holds.

(4) The containment Qj ⊆ Q′
j holds.

for all j ∈ ObJ
Fix a family (xj)j∈Ob J ∈

∏
j∈J A(j). Let I be a finite subset of ObJ , we denote

by I the full subcategory of J with class of objects I. Put TI =
⊔
j∈I A(j), where

⊔

denotes the disjoint union. Put LI = Mor I ⊔
⋃
j∈I({j}×L ). We shall extend LI

to a similarity type (i.e., assign an arity to each element of LI) and endow TI with
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a structure of a LI -algebra. For each n-ary operation symbol ℓ ∈ L and each
j ∈ ObJ , we say that (j, ℓ) is a n-ary operation symbol, and we put:

(j, ℓ)TI (a1, a2, . . . , an) =

{
ℓA(j)(a1, a2, . . . , an) if a1, a2, . . . , an ∈ A(j),

xj Otherwise,

for all a1, a2, . . . , an ∈ TI . Every f ∈ Mor I will be a unary operation symbol, and
for f : i→ j we put:

fTI (a) =

{
A(f)(a) for all a ∈ A(i),

xj for all a ∈ TI −A(i).

Put L ′
I =

⋃
j∈I({j}×L ) ⊆ LI . We first show that (TI ,L

′
I) is locally ≤ κ. Let X

be a finite subset of TI . Put Xj = {xj} ∪ (X ∩ A(j)) for all j ∈ I. Let Yj be
the subalgebra of (A(j),L ) generated by Xj , for all j ∈ I. As A(j) is locally ≤ κ
and Xj is finite, we get cardYj ≤ κ, for all j ∈ I. Put Y =

⊔
j∈I Yj , then Y is a

subalgebra of (TI ,L
′
I) and Y ⊇ X . It follows that (TI ,L

′
I) is locally ≤ κ+ card I.

Moreover we have LI −L ′
I = Mor I, so (TI ,LI) is locally ≤ κ+ cardMor I.

Put Lj = {j} ×L , for all j ∈ ObJ . The similarity type Lj is a sub-similarity
type of LI , for all I ∈ [ObJ ]<ω −{∅} and all j ∈ I. Applying Lemma 3.5, arguing
by induction on card I, we construct a family (T ′

I ,LI)I∈[ObJ]<ω−{∅} of algebras
such that:

(1) the algebra (T ′
I ,LI) is a subalgebra of (TI ,LI),

(2) the morphism Conc q
I
j : Conc(T

′
I ,Lj)→ Conc(TI ,Lj) is one-to-one, where

qIj : (T ′
I ,Lj)→ (TI ,Lj) denotes the inclusion map, for all j ∈ I.

(3) the containment
⊔
i∈I Q

′
i ⊆ T

′
I holds,

(4) the containment T ′
K ⊆ T

′
I holds,

(5) the inequality cardT ′
I ≤ κ+

∑
i∈I cardQ′

i + cardMor I holds,

for all finite nonempty subsets K ⊆ I of ObJ .
Let I be a finite nonempty subset of ObJ , let j ∈ I. Put BIj = A(j) ∩ T ′

I . We
consider:

qIj : (T ′
I ,Lj)→ (TI ,Lj),

pIj : (BIj ,Lj)→ (A(j),Lj),

sIj : (BIj ,Lj)→ (T ′
I ,Lj),

tIj : (A(j),Lj)→ (TI ,Lj),

the inclusion maps. The map Conc q
I
j is one-to-one. The following diagram is

commutative:

(T ′
I ,Lj)

qI
j

−−−−→ (TI ,Lj)

sI
j

x
xtIj

(BIj ,Lj) −−−−→
pI

j

(A(j),Lj)

Let θ be a congruence of (BIj ,Lj), it is easy to check that θ∪ idT ′
I

is a congruence of

(T ′
I ,Lj). Thus Conc s

I
j is one-to-one. Hence Conc p

I
j is one-to-one. The following

statements hold:
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(1) The morphism Conc p
I
j : (BIj ,L )→ (A(j),L ) is one-to-one, where we de-

note by pIj : (BIj ,L )→ (A(j),L ) the inclusion map.

(2) The containment Q′
j ⊆ B

I
j holds,

(3) The containment BKj ⊆ B
I
j holds,

(4) cardBIj ≤ κ+
∑

i∈I cardQ′
i + cardMor I,

(5) A(f)(BIi ) ⊆ B
I
j for all f : i→ j in I,

for each finite nonempty subset K ⊆ I of ObJ and each j ∈ K.
The subset Bj =

⋃
I∈[Ob(J↓j)]<ω−{∅}B

I
j is a directed union of the algebras BIj ,

for I ∈ [Ob(J ↓ j)]<ω − {∅}. Moreover, the following statements hold for each
j ∈ ObJ :

• The map Conc pj : Conc(Bj/αj) → Conc(A(j)/αj) is one-to-one, where
pj : Bj/αj →֒A(j)/αj denotes the canonical embedding.

• The containmentQ′
j ⊆ Bj holds. So Conc(A(j)/αj) = Conc

Bj/αj (A(j)/αj),
and so Conc qj : Conc(Bj/αj)→ Conc(A(j)/αj) is an isomorphism.
• The following inequalities hold:

cardBj ≤
∑

I∈[Ob(J↾j)]<ω−{∅}

(
κ+

∑

i∈I

cardQ′
i + cardMor I

)

≤ κ+
∑

iEj

cardQ′
i +

∑

I∈[Ob(J↾j)]<ω−{∅}

(
cardMor I

)

≤ κ+
∑

iEj

(
cardQi + Conc(A(i)/αi)

)
+ cardMor(J ↾ j)

• A(f)(Bi) ⊆ Bj for all f : i→ j in J . �

Lemma 3.7. Le λ be an infinite cardinal. Let L be a similarity type, let V be a

locally ≤ λ variety of L -algebras, let U be a poset, let J be a small category, and

let ~κ = (κu)u∈U be a family of cardinals such that

(1) the inequality λ+ cardMorJ < κu holds for all u ∈ U ,

(2) for any family (κju)
j∈Ob J
u∈U of cardinals such that κju < κu for all u ∈ U and

all j ∈ ObJ , the inequality
∑
v≤u

∑
j∈Ob J κ

j
v < κu holds.

Then V is (U, J,~κ)-Löwenheim-Skolem.

Proof. Let A : J → V be a functor, let (αju)
j∈Ob J
u∈U be a family of congruences with

all αju ∈ ConA(j), such that
∑

j∈Ob J cardConc(A(j)/αju) < κu for all u ∈ U . We

can define a functor A′ : J × U → V by

(j, u) 7→ A(j) for all (j, u) ∈ Ob(J × U),

(f : i→ j, u ≤ v) 7→ A(f) for all (f : i→ j, u ≤ v) ∈ Mor(J × U).

Moreover, αju is a congruence of A′(j, u) for all (j, u) ∈ Ob(J × U). So, by
Lemma 3.6, there exists a family (Bju)(j,u)∈Ob(J×U) of algebras such that:

(1) The algebra Bju is a subalgebra of A′(j, u) for all (j, u) ∈ Ob(J × U).
(2) The containment A′(f, u ≤ v)(Bju) ⊆ Bkv holds for every arrow (f : j →

k, u ≤ v) of J × U .
(3) The morphism Con(qju) is an isomorphism, where qju denotes the canonical

embedding Bju/α
j
u →֒A′(j, u)/αju, for all (j, u) ∈ Ob(J × U).
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(4) The following inequality holds, for all (j, u) ∈ Ob(J × U):

cardBju ≤κ+ cardMor
(
(J × U) ↾ (j, u)

)

+
∑

(i,v)E(j,u) in J × U

(
cardConc(A

′(i, v)/αiv)
)
.

The statements (1)–(5) of Definition 3.1 are satisfied. Moreover:

cardMor
(
(J × U) ↾ (j, u)

)
≤ κ+ cardMorJ + card(U ↓ u) < κu,

for all (j, u) ∈ Ob(J × U). As cardConc(A
′(i, u)/αiu) = cardConc(A(i)/αiu) < κu,

the following inequalities hold:
∑

(i,v)E(j,u) in J × U

(
cardConc(A

′(i, v)/αiv)
)
≤
∑

v≤u

∑

i∈Ob J

(
cardConc(A(i)/αiv)

)

< κu.

Thus cardBju < κu, for every u ∈ U and for every j ∈ ObJ . So, using again the
assumptions of the lemma, the following inequality holds:

∑

j∈Ob J

cardBju < κu, for all u ∈ U. �

Lemma 3.8. Let V be a finitely generated congruence-distributive variety of alge-

bras. Let S be a finite (∨, 0)-semilattice. Then there exist, up to isomorphism, at

most finitely many A ∈ V such that ConcA ∼= S. Moreover, all such A are finite.

Proof. As V is a finitely generated congruence-distributive variety of algebras, there
exist, by Jónsson’s Lemma, only finitely many, up to isomorphism, subdirectly
irreducible algebras in V, and they are all finite. Let A ∈ V such that ConcA ∼= S.
Recall that M(ConA) denote the set of all completely meet-irreducible elements of
ConA, hence A/θ is subdirectly irreducible for all θ ∈ M(ConA). As A embeds
into the product A →֒

∏
θ∈M(ConA)A/θ, and M(ConA) ∼= M(IdS), the conclusion

follows. �

Lemma 3.9. Let V be a finitely generated congruence-distributive variety of alge-

bras, let U be a lower finite poset, let J be a finite poset, put κu = ℵ0 for all u ∈ U .

Then V is (U, J,~κ)-Löwenheim-Skolem.

Proof. Let A : J → V be a functor, let (αju)
j∈Ob J
u∈U be a family of congruences, with

all αju ∈ Con(A(j)), such that cardConc(A(j)/αju) < ℵ0 for all u ∈ U and all j ∈ J .
By Lemma 3.8, A(j)/αju is finite for all u ∈ U and all j ∈ J . Let Qju be a finite

subset of A(j) such that A(j)/αju = {q/αju | q ∈ Q
j
u} for all j ∈ J and all u ∈ U .

Let Bju be the subalgebra of A(j) generated by
⋃
{A(i, j)(Qiv) | v ≤ u and i ≤ j}

for all j ∈ J and all u ∈ U . As V is finitely generated, all objects of V are locally
finite, and so Bju is finite for all j ∈ J and all u ∈ U . Moreover the following
statements hold:

(1) The algebra Bju is a subalgebra of A(j) for all u ∈ U and all j ∈ ObJ .
(2) The algebra Bju/α

j
u = A(j)/αju belongs to V for all u ∈ U and all j ∈ ObJ .

(3) The containment Bju ⊆ B
j
v holds for all u ≤ v in U and all j ∈ ObJ .

(4) The containment A(j, k)(Bju) ⊆ Bku holds for every u ∈ U and every j ≤ k
in J .

(5) The canonical embedding qju : Bju/α
j
u →֒A

j/αju is an isomorphism, so Con(qju)
is an isomorphism.
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(6) The inequality
∑

j∈Ob J cardBju < ℵ0 holds for all u ∈ U . �

4. Kernels, supported posets, and norm-coverings

Definition 4.1. A finite subset V of a poset U is a kernel, if for every u ∈ U , there
exists a largest element v ∈ V such that v ≤ u. We denote this element by V · u.

We say that U is supported, if every finite subset of U is contained in a kernel
of U .

We denote by V · u the largest element of V ∩ u, for every kernel V of U and
every ideal u of U . As an immediate application of the finiteness of kernels, we
obtain the following.

Lemma 4.2. Any intersection of a nonempty collection of kernels of a poset U is

a kernel of U .

Example 4.3. Let κ be a cardinal, we put Tκ = κ ⊔ {⊥} with order defined by
x ≤ y if either x = y or x = ⊥. Then Tκ is a supported poset, and the kernels of
Tκ are all the finite subsets containing ⊥.

Definition 4.4. A norm-covering of a poset I is a pair (U, |·|), where U is a
supported poset and |·| : U → I, u 7→ |u| is an order-preserving map.

A sharp ideal of (U, |·|) is an ideal u of U such that {|v| | v ∈ u} has a largest
element, we denote this element by |u|. For example, for every u ∈ U , the principal
ideal U ↓ u is sharp; we shall often identify u and U ↓ u. We denote by Ids(U, |·|)
the set of all sharp ideals of (U, |·|), partially ordered by inclusion.

A sharp ideal u of (U, |·|) is extreme, if there is no sharp ideal v with v > u and
|v| = |u|. We denote by Ide(U, |·|) the set of all extreme ideals of (U, |·|).

The norm-covering is tight if the map Ide(U, |·|) ↓u→ I ↓ |u|, v 7→ |v| is a poset
isomorphism for all u ∈ Ide(U, |·|).

Let ~κ = (κi)i∈I be a family of cardinal numbers. We say that (U, |·|) is ~κ-
compatible, if for every order-preserving map F : Ide(U, |·|) → P(U) such that
cardF (u) < κ|u| for all u ∈ Ide(U, |·|)=, there exists an order-preserving map
σ : I → Ide(U, |·|) such that:

(1) The equality |σ(i)| = i holds for all i ∈ I.
(2) The containment F (σ(i)) ∩ σ(j) ⊆ σ(i) holds for all i ≤ j in I.

We will say ‘κ-compatible’ instead of ~κ-compatible in case κi = κ for all i ∈ I.

Observe that the condition (2) implies that V ·σ(i) = V ·σ(j), for any i ≤ j in I
and any kernel V of U contained in F (σ(i)).

Example 4.5. Let Tκ as defined in Example 4.3. We consider {0, 1} the two-
element chain. We put :

|·| : Tκ → {0, 1}

x 7→ |x| =

{
0 if x = ⊥,

1 otherwise.

Thus (Tκ, |·|) is a norm-covering of {0, 1}. Moreover :

Ide(Tκ, |·|) = {↓u | u ∈ Tκ} = {{⊥}} ∪ {{⊥, α} | α ∈ κ} ∼= Tκ.

Let f : Ide(Tκ, |·|)→ P(κ) such that card f(u) < κ for all u ∈ Ide(Tκ, |·|)=. Hence
cardf({⊥}) < κ. Let α ∈ κ − f({⊥}). Let σ(0) = {⊥} and σ(1) = {⊥, α}, we
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have |σ(0)| = 0 and |σ(1)| = 1. Moreover f(σ(0)) ∩ σ(1) ⊆ σ(0). Hence (Tκ, |·|) is
a κ-compatible norm-covering of {0, 1}.

The following construction is a generalization of this example, but we give a
norm-covering of a tree instead of one of the two-element chain.

Proposition 4.6. Let T be a well-founded tree and let ~κ = (κt)t∈T and (κ′t)t∈T−

be families of infinite cardinals such that for any t ∈ T− the following statements

hold:

(1) If t has a lower cover, then κ′t ≥ κt∗ .
(2) If t has no lower cover, then for any family (κ′′s )s<t of cardinals such that

κ′′s < κs for any s < t, the inequality
∑

s<t κ
′′
s < κ′t holds.

Then there exists a tight ~κ-compatible norm-covering (U, |·|) of T such that cardU =∑
t∈T− κ′t.

Proof. We denote by ⊥ the least element of T , and we put φ(t) = (T ↓ t) − {⊥},
for any t ∈ T . We put:

U =
⋃
{
∏

t∈C

κ′t | C is a finite chain of T−

}
;

We view the elements of U as (partial) functions and “to be greater” means “to
extend”.

We put |u| =
∨

domu, for any u ∈ U . We should note that the chain C may be
empty (in the definition of U), and |∅| = ⊥.

We prove that U is supported. Let V be a finite subset of U . Put:

Ys = {us | u ∈ V and s ∈ domu}, for all s ∈ T−

and put D = {s ∈ T− | Ys 6= ∅}, hence D =
⋃
u∈V domu. Put:

W = {u ∈ U | domu ⊆ D and (∀t ∈ domu)(ut ∈ Yt)}

The sets D, and Ys, for all s ∈ T−, are finite, so W is finite. As us ∈ Ys for all
u ∈ V and s ∈ domu, V is contained in W .

Let u ∈ U and S = {s ∈ domu | us ∈ Ys}, then u ↾ S ∈ W . The containment
dom v ⊆ S holds for all v ∈ W ↓ u, so u ↾ S is the largest element of W smaller
than u, and so W is a kernel of U containing V . Thus (U, |·|) is a norm-covering
of T .

The set {x↾P | P finite subset of φ(t)} is an extreme ideal of (U, |·|), for all t ∈ T
and all x ∈

∏
s∈φ(t) κ

′
s. We identify this ideal with x. Moreover, all the extreme

ideals of (U, |·|) are of this form. Thus (U, |·|) is a tight norm-covering of T .
Let F : Ide(U, |·|) → P(U) be an order-preserving map such that cardF (u) <

κ|u| for all u ∈ Ide(U, |·|)=. Put:

Ft(u) = {vt | v ∈ F (u) and t ∈ dom v}, for all t ∈ T− and all u ∈ Ide(U, |·|).

Thus cardFt(u) ≤ cardF (u) < κ|u|, for all u ∈ Ide(U, |·|)= and all t ∈ T−.

Let S be a lower subset of T− and let x ∈
∏
t∈S κ

′
t such that xt /∈ Ft(x ↾ φ(s))

for all s < t in S. Let t ∈ T− such that t /∈ S and φ(t) − {t} ⊆ S. If t has a lower
cover, then card

⋃
s<t Ft(x ↾ φ(s)) = cardFt(x ↾ φ(t∗)) < κt∗ ≤ κ

′
t. If t has no lower

cover, then card
⋃
s<t Ft(x ↾ φ(s)) ≤

∑
s<t cardFt(x ↾ φ(s)) < κ′t. In both cases, we

can extend x to S ∪ {t} by picking xt /∈ Ft(x ↾ φ(s)) for all s < t in T .
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As T is well-founded, we can construct by induction x ∈
∏
t∈T− κ′t such that

xt /∈ Ft(x ↾ φ(s)) for all s < t in T . The map σ : T → Ide(U, |·|), t 7→ x ↾ φ(t) is
order-preserving, and |σ(t)| = t, for all t ∈ T .

Let s < t in T . Let u ∈ F (x ↾φ(s))∩ (x ↾φ(t)), and let C = domu. So C ⊆ φ(t),
and u = x ↾ C. Let s < r ≤ t, by construction xr /∈ Fr(x ↾ φ(s)), so r /∈ C. Thus
C ⊆ φ(s), and so u = x ↾ C belongs to x ↾ φ(s). �

Corollary 4.7. Let T be a well-founded tree and let κ be an infinite cardinal such

that cardT ≤ κ and card(↓t) < cf κ for all t ∈ T . Then there exists a tight κ-
compatible norm-covering (U, |·|) of T such that cardU = κ.

Proof. Put κt = κ′t = κ, for any t ∈ T . The assumptions of Proposition 4.6 are
clearly satisfied. �

5. Condensates

Definition 5.1. Let I be a poset, let (U, |·|) be a norm-covering of I, and let
~A = (Ai, fi,j)i≤j in I be a diagram of algebras of the same similarity type.

• A support V of a ∈
∏
u∈U A|u| is a kernel V of U such that au = f|V ·u|,|u|(aV ·u)

for all u ∈ U .
• We put:

CondU ( ~A, V ) =

{
a ∈

∏

u∈U

A|u| | V is a support of a

}
, for any kernel V of U .

The condensate of ~A with respect to U is:

Cond( ~A,U) =
⋃{

CondU ( ~A, V ) | V is a kernel of U
}
.

• We denote by supp a the smallest support of a, and we call it the support

of a.

By Lemma 4.2 the support of a exists, for all a ∈ Cond( ~A,U).

Lemma 5.2. With the notations of the previous definition, the following statements

hold.

(1) The set CondU ( ~A, V ) is a subalgebra of
∏
u∈U A|u|, for each kernel V of U .

(2) The containment CondU ( ~A, V ) ⊆ CondU ( ~A,W ) holds, for all kernels V
and W of U such that V ⊆W .

(3) The set Cond( ~A,U) is a subalgebra of
∏
u∈U A|u|, and it is the directed

union of the algebras CondU ( ~A, V ), with V kernel of U .

(4) The morphism πV : CondU ( ~A, V ) →
∏
v∈V A|v|, a 7→ a ↾ V is an isomor-

phism, for any kernel V of U .

(5) The algebra Cond( ~A,U) is a directed union of finite products of the Ais.

(6) The morphism πu : Cond( ~A,U)→ A|u|, a 7→ au is onto, for all u ∈ U .

(7) The map:

πu : Cond( ~A,U)→ A|u|

a 7→ f|supp(a)·u|,|u|(asupp(a)·u)

is a surjective morphism of algebras, for all u ∈ Ids(U, |·|). Furthermore

πu(a) = f|V ·u|,|u|(aV ·u), for any kernel V of U and any a ∈ CondU ( ~A, V ).
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Proof. The statements (1), (2), and (3) are immediate. The morphism πV in (4)
is clearly one-to-one. Let x ∈

∏
v∈V A|v|, put au = f|V ·u|,|u|(xV ·u), for all u ∈ U .

Then V is a support of a, and a ↾ V = x. So πV is an isomorphism. The statement
(5) follows from (4) and (3). The statement (6) follows from (4).

Now we verify (7). Let u ∈ Ids(U, |·|). Let V be a kernel of U and let a ∈

CondU ( ~A, V ), then:

πu(a) = f|supp(a)·u|,|u|(asupp(a)·u)

= f|V ·u|,|u|(f|supp(a)·u|,|V ·u|(asupp(a)·u))

= f|V ·u|,|u|(aV ·u)

This, together with (3), shows that πu is a morphism of algebras. Let v ∈ u such
that |v| = |u|, and let V be a kernel of U such that v ∈ V . Then |V · u| = |u|,

and πu ↾ CondU ( ~A, V ) = f|V ·u|,|u| ◦ πV ·u ↾ CondU ( ~A, V ) = πV ·u ↾ CondU ( ~A, V ) is
surjective. �

We shall call the map πu above the canonical projection from Cond( ~A,u) to
A|u|.

Proposition 5.3. Let V be a class of algebras closed under finite products and

under directed unions, let I be a poset, let (U, |·|) be a norm-covering of I, let
~A = (Ai, fi,j)i≤j in I and ~B = (Bi, gi,j)i≤j in I be two objects of VI , and let ~h =

(hi)i∈I : ~A→ ~B be an arrow of VI . Then there are morphisms of algebras:

CondU (~h, V ) : CondU ( ~A, V )→ CondU ( ~B, V )

(au)u∈U 7→ (h|u|(au))u∈U , for any kernel V of U

and

Cond(~h, U) : Cond( ~A,U)→ Cond( ~B,U)

(au)u∈U 7→ (h|u|(au))u∈U

Moreover, Cond(−, U) : VI → V is a functor.

6. Liftings

In this section, let S be a class of (∨, 0)-semilattices, closed under finite products
and directed unions, let I be a poset, let ~κ = (κi)i∈I be a family of cardinal numbers,
let (U, |·|) be a ~κ-compatible norm-covering of I, and let V be a class of algebras of
the same similarity type.

Proposition 6.1. Let ~D = (Di, φi,j)i≤j in I be an object of SI , let u ∈ Ids(U, |·|),

let π
~D
u

: Cond( ~D,U) ։D|u| be the canonical projection. Then the subset

θ
~D
u

= {a ∈ Cond( ~D,U) | π
~D
u

(a) = 0},

is an ideal of Cond( ~D,U), and Id(π
~D
u

) ↾ ↑θ
~D
u

: ↑ θ
~D
u
→ Id(D|u|) is an isomorphism,

where we abbreviate (Id Cond( ~D,U)) ↑ θ
~D
u

by ↑θ
~D
u

.

Proof. The morphism ρu = Id(π
~D
u

) is surjective and ρu(θ
~D
u

) = 0, so ρu ↾ ↑θ
~D
u

is
surjective.

Fix v ∈ u such that |v| = |u|. Let L,L′ ∈ ↑θ
~D
u

such that ρu(L) ⊆ ρu(L′), we

must prove that L ⊆ L′. Let a ∈ L. As π
~D
u

(a) ∈ ρu(L′), there exists a′ ∈ L′ such
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that π
~D
u

(a) ≤ π
~D
u

(a′). Let V be a common support of a and a′ such that v ∈ V . So
|u| = |v| ≤ |V · u| ≤ |u|, and so |V · u| = |u|, and hence φ|V ·u|,|u| = id. Therefore,

aV ·u = φ|V ·u|,|u|(aV ·u) = π
~D
u

(a) ≤ π
~D
u

(a′) = φ|V ·u|,|u|(a
′
V ·u) = a′V ·u.

Put:

bw =

{
aw If V · w 6= V · u

0 If V · w = V · u
, for all w ∈ U .

The set V is a support of b, and π
~D
u

(b) = φ|V ·u|,|u|(bV ·u) = 0.
Let w ∈ U . If V · w 6= V · u, then aw = bw ≤ a′w ∨ bw. If V · w = V · u, then

|u| = |V · u| = |V · w| ≤ |w|. Thus:

a′w = φ|V ·w|,|w|(a
′
V ·w) = φ|u|,|w|(φ|V ·u|,|u|(a

′
V ·u)) = φ|u|,|w|(π

~D
u

(a′)),

and, similarly, aw = φ|u|,|w|(π
~D
u

(a)). As π
~D
u

(a) ≤ π
~D
u

(a′), we obtain that aw ≤ a′w.

So we have proved that a ≤ b ∨ a′. As b ∈ θ
~D
u
∈ L′ and a′ ∈ L′, it follows that

a ∈ L′. Hence L ⊆ L′, and ρu is an embedding. �

Lemma 6.2. Let (ψi)i∈I = ~ψ : ~C → ~D be an arrow of SI , let u ∈ Ids(U, |·|). Then:

ψ|u| ◦ π
~C
u

= π
~D
u
◦ Cond(~ψ, U),

and

Id(Cond(~ψ, U))(θ
~C
u

) ⊆ θ
~D
u
.

Proof. Let ~C = (Ci, γi,j)i≤j in I , let ~D = (Di, δi,j)i≤j in I , let V be a kernel of U ,

and let a ∈ CondU (~C, V ). By Proposition 5.3, V is also a support of Cond(~ψ, U)(a),
and

π
~D
u

(Cond(~ψ, U)(a)) = δ|V ·u|,|u|((Cond(~ψ, U)(a))V ·u)

= δ|V ·u|,|u|(ψ|V ·u|(aV ·u))

= ψ|u|(γ|V ·u|,|u|(aV ·u))

= ψ|u|(π
~D
u

(a))

The containment is an obvious consequence of the equality. �

Definition 6.3. Let ~D be an object of SI . An U -quasi-lifting of ~D in V is a pair

(τ, T ), where T ∈ V and τ : Conc T → Cond( ~D,U) is a (∨, 0)-homomorphism such

that ↑αu → ↑θ
~D
u

, β 7→ Id(τ)(β)∨θ
~D
u

is an isomorphism, for all u ∈ Ide(U, |·|), where

αu =
∨
{β ∈ Conc T | τ(β) ∈ θ

~D
u
}.

Observe that in the definition above we use the identification of ConT with the
ideal lattice of Conc T . We shall now extend Definition 6.3 from objects of SI to
diagrams of SI .

Definition 6.4. Let J be a category and let D : J → SI be a functor. An U -

quasi-lifting of D in V is a pair (~τ , J), where J : J → V is a functor and ~τ =
(τ j)j∈Ob J : Conc ◦J→ Cond(D(−), U) is a natural transformation, such that (τ j , J(j))
is a U -quasi-lifting of D(j) for all j ∈ ObJ .

The two following lemmas are obvious.
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Lemma 6.5. Let ~D be an object of SI , let T ∈ V, and let τ : Conc T → Cond( ~D,U)

be an isomorphism. Then (τ, T ) is a U -quasi-lifting of ~D.

Lemma 6.6. Let J be a category, let D : J → SI be a functor, let J : J → V

be a functor, and let τ = (τ j)j∈Ob J : Conc ◦J → Cond(D(−), U) be a natural

isomorphism. Then (τ, J) is an U -quasi-lifting of D.

The following lemma expresses a commutation property between the condensate
functor Cond and the Conc functor.

Lemma 6.7. Let ~A = (Ai, fi,j)i≤j in I be an object of VI , let ~D = Conc
~A =

(ConcAi,Conc fi,j)i≤j in I , let pu : Cond( ~A,U) ։A|u| be the canonical projection,

for all u ∈ Ids(U, |·|). Put:

τ : Conc Cond( ~A,U)→ Cond( ~D,U)

β 7→ ((Conc pv)(β))v∈U

Then (τ,Cond( ~A,U)) is an U -quasi-lifting of ~D.

Proof. Denote by πu : Cond( ~D,U)→ D|u| the canonical projection, and put θu =

θ
~D
u

for all u ∈ Ids(U, |·|). Let x, y ∈ Cond( ~A,U) and put β = ΘCond( ~A,U)(x, y).

Then τ(β) = (ΘA|u|
(xu, yu))u∈U . Let V be a common support of x and y. For

every u ∈ U ,

ΘA|u|
(xu, yu) = ΘA|u|

(f|V ·u|,|u|(xV ·u), f|V ·u|,|u|(yV ·u))

= Conc(f|V ·u|,|u|)(ΘA|V ·u|
(xV ·u, yV ·u))

So V is a support of τ(β). It follows that τ takes, indeed, its values in Cond( ~D,U).
Furthermore, for x, y, V , and β as above,

πu(τ(β)) = Conc(f|V ·u|,|u|)(τ(β)V ·u)

= Conc(f|V ·u|,|u|)(ΘA|V ·u|
(xV ·u, yV ·u))

= ΘA|u|
(pu(x), pu(y)),

so πu ◦ τ = Conc pu for all u ∈ Ids(U, |·|).

Let u ∈ Ids(U, |·|) and put αu =
∨
{β ∈ Conc(Cond( ~A,U)) | τ(β) ∈ θu}. The

following equivalences hold, for every β ∈ Conc Cond( ~A,U):

β ⊆ ker pu ⇐⇒ Conc(pu)(β) = 0

⇐⇒ πu ◦ τ(β) = 0

⇐⇒ τ(β) ∈ θu

⇐⇒ β ⊆ αu,

thus αu = ker pu. Let τu : ↑αu → ↑θu be the map defined by τu(β) = (Id τ)(β)∨θu

for all β ∈ ConCond( ~A,U) containing αu. As (Id πu)(θu) = 0, the following
diagram is commutative:

↑θu

Id(πu)

((QQQQQQQQQQQQQQ

↑αu

τu

OO

Con(pu)
// Con(A|u|)

As both (Id πu) ↾ ↑θu and (Con pu) ↾ ↑αu are isomorphisms, so is τu. �
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Lemma 6.8. Let J be a category, let A : J → VI be a functor, put D = Conc ◦A.

Let τ j : Conc(Cond(A(j), U))→ Cond(Conc(A(j)), U) be the maps defined in Lemma 6.7,
for all j ∈ J . Let τ = (τ j)j∈Ob J . Then (τ,Cond(A(−), U)) is a U -quasi-lifting

of D.

Proof. By Lemma 6.7, (τ j ,Cond(A(j), U)) is a U -quasi-lifting of D(j), for all j ∈
ObJ .

Let A(j) = (Aji , t
j
i,i′)i≤i′ in I , for all j ∈ ObJ . Let f : j → k be an arrow of J ,

let A(f) = (afi )i∈I , let pku : Cond(A(k), U) ։ Ak|u| be the canonical projection, for

all u ∈ U . Let x, y ∈ Cond(A(j), U). Then:

Cond
(
Conc A(f), U

)(
τ j
(
ΘCond(A(j),U)(x, y)

))

= Cond
(
Conc A(f), U

)((
ΘAj

|u|

(xu, yu)
)
u∈U

)

=
(

Conc(a
f
|u|)
(
ΘAj

|u|
(xu, yu)

))

u∈U

=
(
ΘAk

|u|

(
af|u|(xu), a

f
|u|(yu)

))

u∈U

=
(
ΘAk

|u|

(
pku(Cond(A(f), U)(x)), pku(Cond(A(f), U)(y))

))

u∈U

=
(

Conc(p
k
u)
(
ΘCond(A(k),U)

(
Cond(A(f), U)(x),Cond(A(f), U)(y)

)))

u∈U

= τk
(
ΘCond(A(k),U)

(
Cond(A(f), U)(x),Cond(A(f), U)(y)

))

= τk
(

Conc

(
Cond(A(f), U)

)(
ΘCond(A(j),U)(x, y)

))

So the following diagram is commutative:

Cond(Conc A(j), U)
Cond(Conc A(f),U)
−−−−−−−−−−−−−→ Cond(Conc A(k), U)

τ j

x
xτk

Conc Cond(A(j), U)
Conc Cond(A(f),U)
−−−−−−−−−−−−−→ Conc Cond(A(k), U)

This concludes the proof. �

Theorem 6.9. Let J be a small category, suppose that V is closed under ho-

momorphic images, and is
(

Ide(U, |·|)=, J, (κ|u|)u∈Ide(U,|·|)=

)
-Löwenheim-Skolem.

Let D : J → SI be a functor, let (~τ ,A) be a U -quasi-lifting of D in V. Let

D(j) = ~Dj =
(
Dj
i , φ

j
i,i′

)

i≤i′ in I
, for all j ∈ ObJ , let D(f) = ~ψf = (ψfi )i∈I ,

for all f ∈MorJ . If
∑
j∈Ob J cardDj

i < κi, for all i ∈ I, then there exists a lifting

in V of the diagram D̂ : I × J → S, associated to D (cf. Section 2).

Proof. Let θj
u

= θ
D(j)
u as defined in Proposition 6.1, let αj

u
=
∨
{β ∈ Conc A(j) |

τ j(β) ≤ θj
u
}, let τ j

u
: ↑ αj

u
→ ↑θj

u
, β 7→ Id(τ j)(β) ∨ θj

u
, as in Definition 6.3, let

pj
u

: A(j) ։ A(j)/αj
u

the canonical projection, and let πj
u

: Cond(D(j), U) ։Dj
|u|,

the canonical projection as defined in Lemma 5.2(7), for all u ∈ Ide(U, |·|) and all
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j ∈ ObJ . The map χj
u

= Con(pj
u
) ◦ (τ j

u
)−1 ◦ (Id(πj

u
) ↾ ↑θj

u
)−1 is an isomorphism.

Id(Dj
|u|)

χj
u

**
↑θj

u
Idπj

u

oo ↑αj
u

τ j
u

oo
Con pj

u

// Con(A(j)/αj
u
)

Moreover
∑

j∈Ob J cardConc(A(j)/αj
u
) =

∑
j∈Ob J cardDj

|u| < κ|u|, for all u ∈

Ide(U, |·|)=. So there exists a family (Bj
u
)j∈Ob J
u∈Ide(U,|·|)=

of algebras such that:

(1) The algebra Bj
u

is a subalgebra of A(j).
(2) The algebra Bj

u
/αj

u
belongs to V.

(3) The containment Bj
u
⊆ Bj

v
holds.

(4) The containment A(f)(Bj
u
) ⊆ Bk

u
holds.

(5) The morphism Con(qj
u
) is an isomorphism, where qj

u
: Bj

u
/αj

u
→֒ A(j)/αj

u

denotes the canonical embedding.
(6) The inequality

∑
l∈Ob J cardBl

u
< κ|u| holds.

for all u ≤ v in Ide(U, |·|)= and for every morphism f : j → k in J . Moreover, we
can extend this family to Ide(U, |·|), by Bj

u
= A(j), the statements (1)–(5) hold for

all u ≤ v in Ide(U, |·|), and for every morphism f : j → k in J .
Put:

F : Ide(U, |·|)→ P(U)

u 7→
⋃
{supp τ j(ΘA(j)(x, y)) | j ∈ ObJ and x, y ∈ Bj

u
}

so F (u) < κ|u| for all u ∈ Ide(U, |·|)=. As (U, |·|) is ~κ-compatible there exists an
order-preserving map σ : I → Ide(U, |·|) such that:

(1) The equality |σ(i)| = i holds for all i ∈ I.
(2) The equality V · σ(i) = V · σ(i′) holds for any i ≤ i′ in I and any kernel V

of U contained in F (σ(i)).

Let i ∈ I and j ∈ ObJ . The map ξji = (Con(qjσ(i)))
−1 ◦ χσ(i) is an isomorphism,

and the algebra B(i, j) = Bjσ(i)/α
j
σ(i) ∈ V belongs to V.

Id(Dj
i )

χj

σ(i)

++

ξj

i

11

↑θjσ(i)
Id(πj

σ(i)
)

oo ↑αjσ(i)
τ j

σ(i)

oo
Con(pj

σ(i)
)

// Con(A(j)/αjσ(i))

Con(B(i, j))

Con(qj

σ(i)
)

OO

Let i ≤ i′ in I, let j ∈ ObJ , let x, y ∈ Bjσ(i), let β = ΘA(j)(x, y). The following

equalities hold:

Con(pjσ(i))(β ∨ α
j
σ(i)) = Θ

A(j)/αj

σ(i)

(x/αjσ(i), y/α
j
σ(i))

= Con(qjσ(i))(ΘB(i,j)(x/α
j
σ(i), y/α

j
σ(i))). (6.1)
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similarly:

Con(pjσ(i′))(β) = Con(qjσ(i′))(ΘB(i′,j)(x/α
j
σ(i′), y/α

j
σ(i′))). (6.2)

Moreover, set V = supp(τ j(β)). Then V ⊆ F (σ(i)), so V · σ(i) = V · σ(i′) and so:

πjσ(i′)(τ
j(β)) = φ|V ·σ(i′)|,|σ(i′)|(τ

j(β)V ·σ(i′)) by Lemma 5.2(7)

= φ|V ·σ(i)|,i′(τ
j(β)V ·σ(i)) as V · σ(i′) = V · σ(i) and |σ(i′)| = i′

= φi,i′ ◦ φ|V ·σ(i)|,i(τ
j(β)V ·σ(i))

= φi,i′ ◦ π
j
σ(i)(τ

j(β)) by Lemma 5.2(7).

So:

Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ Id(τ j)(β) = Id(πjσ(i′)) ◦ Id(τ j)(β) (6.3)

As αj
u

=
∨
{β ∈ Conc A(j) | τ j(β) ≤ θj

u
}, we have Id(τ j)(αj

u
) ≤ θj

u
. Thus:

τ j
u
(β ∨ αj

u
) = Id(τ j)(β ∨ αj

u
) ∨ θj

u
= Id(τ j)(β) ∨ θj

u
, for all u ∈ Ide(U, |·|). (6.4)

As Id(πj
u
)(θj

u
) = 0, the following equation holds:

Id(πj
u
) ◦ τ j

u
(β ∨ αj

u
) = Id(πj

u
) ◦ Id(τ j)(β), for all u ∈ Ide(U, |·|). (6.5)

So:

Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ τ
j
σ(i)(β ∨ α

j
σ(i)) = Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ Id(τ j)(β) by (6.5)

= Id(πjσ(i′)) ◦ Id(τ j)(β) by (6.3)

and so, by (6.5), the following equality holds

Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ τ
j
σ(i)(β ∨ α

j
σ(i)) = Id(πjσ(i′)) ◦ Id(τ jσ(i′))(β ∨ α

j
σ(i′)) (6.6)

thus:

ξji′ ◦ Id(φji,i′ ) ◦ (ξji )
−1(ΘB(i,j)(x/α

j
σ(i), y/α

j
σ(i)))

= ξji′ ◦ Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ τ
j
σ(i) ◦ (Con(pjσ(i)) ↾ ↑αjσ(i))

−1

◦ Con(qjσ(i))(ΘB(i,j)(x/α
j
σ(i), y/α

j
σ(i)))

= ξji′ ◦ Id(φji,i′ ) ◦ Id(πjσ(i)) ◦ τ
j
σ(i)(β ∨ α

j
σ(i)) by (6.1)

= ξji′ ◦ Id(πjσ(i′)) ◦ τ
j
σ(i′)(β ∨ α

j
σ(i′)) by (6.6)

= (Con qjσ(i′))
−1 ◦ Con(pjσ(i′)) ◦ (τ jσ(i′))

−1

◦ Id(πjσ(i′) ↾ ↑θjσ(i′))
−1 ◦ Id(πjσ(i′)) ◦ τ

j
σ(i′)(β ∨ α

j
σ(i′))

= (Con qjσ(i′))
−1 ◦ Con(pjσ(i′))(β ∨ α

j
σ(i′))

= ΘB(i′,j)(x/α
j
σ(i′), y/α

j
σ(i′)). by (6.2)

It follows that the following morphism is well-defined:

gji,i′ : B(i, j)→ B(i′, j)

x/αjσ(i) 7→ x/αjσ(i′)
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and the following diagram is commutative:

Id(Dj
i′ )

ξj

i′−−−−→ Con(B(i′, j))

Id(φj

i,i′
)

x
xCon(gj

i,i′
)

Id(Dj
i )

ξj

i−−−−→ Con(B(i, j))

(6.7)

Let f : j → k be an arrow of J , let i ∈ I, and put u = σ(i). As (~τ ,A) is a
U -quasi-lifting of D, the following diagram is commutative:

Id(Dk
i )

Id(πk
u
)

←−−−− Id(Cond(D(k), U))
Id(τk)
←−−−− Con(A(k))

Id(ψf

i
)

x Cond(D(f),U)

x Con(A(f))

x

Id(Dj
i )

Id(πj
u
)

←−−−− Id(Cond(D(j), U))
Id(τ j)
←−−−− Con(A(j))

(6.8)

Let β ∈ Conc A(j) such that τ j(β) ∈ θk
u
. Thus πj

u
(τ j(β)) = 0, so:

0 = ψfi (πj
u
(τ j(β))) = πk

u

(
τk
(
Conc(A(f))(β)

))

and so Con(A(f))(β) ≤ αk
u
. Thus:

Con(A(f))(αj
u
) = Con(A(f))

(∨
{β ∈ Conc(A(j)) | τ j(β) ∈ θk

u
}
)
≤ αk

u

So the following morphism is well-defined:

f̃i : A(j)/αj
u
→ A(k)/αk

u

x/αj
u
7→ A(f)(x)/αk

u

and the following diagram is commutative:

A(k)
pk

σ(i)
−−−−→ A(k)/αkσ(i)

qk
σ(i)

←−−−− B(i, k)

A(f)

x f̃i

x
xf̃i↾B(i,j)

A(j)
pj

σ(i)
−−−−→ A(j)/αjσ(i)

qj

σ(i)
←−−−− B(i, j)

(6.9)

Combining the commutative diagrams (6.9) and (6.10) together with the definitions

of ξki and ξji , we obtain the commutativity of the following diagram:

Id(Dk
i )

ξk
i−−−−→ Con(B(i, k))

Id(ψf

i
)

x
xCon(f̃i↾B(i,j))

Id(Dj
i )

ξj

i−−−−→ Con(B(i, j))

(6.10)

For i ≤ i′ in I and f : j → k in J , put

B(i→ i′, f : j → k) : B(i, j)→ B(i′, k)

x/αjσ(i) 7→ A(f)(x)/αkσ(i′).
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Let i′′ ≥ i′ in I and f ′ : k → k′ in J , then:

B(i′ → i′′, f ′) ◦B(i→ i′, f)(x/αjσ(i)) = B(i′ → i′′, f ′)(A(f)(x)/αkσ(i′))

= A(f ′)(A(f)(x))/αk
′

σ(i′)

= A(f ′ ◦ f)(x)/αk
′

σ(i′)

= B(i→ i′′, f ′ ◦ f)(x/αjσ(i)).

Thus B : I×J → V is a functor. Moreover by (6.7) and (6.10) the following diagram
is commutative:

Id(Dk
i′)

ξk

i′−−−−→ Con(B(i′, k))

Id(φk

i,i′
)

x
xCon(gk

i,i′
)

Id(Dk
i )

ξk

i′−−−−→ Con(B(i, k))

Id(ψf

i
)

x
xCon(f̃i↾B(i,j)))

Id(Dj
i )

ξj

i−−−−→ Con(B(i, j))

As D̂(i ≤ i′, f) = φki,i′ ◦ ψ
f
i and B(i → i′, f) = gki,i′ ◦ f̃i, the following diagram is

commutative:

Id(D̂(i′, k))
ξk

i′−−−−→ Con(B(i′, k))

Id(~D(i→i′,f))

x
xCon(B(i→i′,f))

Id(D̂(i, j))
ξj

i−−−−→ Con(B(i, j))

�

7. Critical points

Definition 7.1. Let V be a class of algebras of the same similarity type. The
congruence class of V is the class of all (∨, 0)-semilattices S such there exists A ∈ V

such that S isomorphic to ConcA. We denote this class by Conc V.

Definition 7.2. Let V1 be a class of algebras of the same similarity type, let V2

be a class of algebras of the same similarity type. The critical point of V1 under V2

is:

crit(V1; V2) = min{cardD | D ∈ Conc(V1)− Conc(V2)},

if Conc V1 6⊆ Conc V2, otherwise we put crit(V1; V2) =∞.
The symmetric critical point of V1 and V2 is defined as

crits(V1; V2) = min{crit(V1; V2), crit(V2; V1)};

it is simply called critical point in [8].

The following corollary shows that, for a fixed category J and a tree T , if V1

and V2 lift the same diagrams of (∨, 0)-semilattices, indexed by J , of not too large
objects, then V1 and V2 lift the same diagrams of (∨, 0)-semilattices, indexed by
T × J , of not too large objects. The condition (1) above is automatically satisfied
if cardL1 ≤ κ and cardL2 ≤ λ.
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Corollary 7.3. Let S be the variety of all (∨, 0)-semilattices, let L1 and L2 be

similarity types, let V1 be a variety of L1-algebras, let V2 be a variety of L2-

algebras, let λ < κ be infinite cardinals, let I be a well-founded tree, and let J be a

small category, such that:

(1) V1 is locally ≤ κ and V2 is locally ≤ λ.
(2) cardMor(J) < κ.
(3) card I ≤ κ.
(4) card(↓i) < cf κ for all i ∈ I.
(5) Every functor D : J → S such that cardD(j) ≤ κ for all j ∈ ObJ , which

has a lifting in V1, has a lifting in V2.

Then every functor D : I × J → S such that cardD(i, j) < κ for all i ∈ I and all

j ∈ ObJ , which has a lifting in V1, has a lifting in V2.

Proof. Let D : I × J → S be a functor such that cardD(i, j) < κ for all i ∈ I
and all j ∈ ObJ , let A : I × J → V1 be a lifting of D, denote by αi,j the identity
congruence of A(i, j), for all i ∈ I and all j ∈ ObJ . By using Lemma 3.6 we can
assume that:

cardA(i, j) ≤ κ+
∑

i′≤i

∑

j′∈Ob J

∑

f : j′→j

cardD(i′, j′) ≤ κ

Moreover by Corollary 4.7 there exists a tight κ-compatible norm-covering (U, |·|)
of I such that cardU ≤ κ. As seen in Section 2, the functor A corresponds to

a functor Ã : J → VI1 and the functor D corresponds to a functor D̃ : J → SI .

Lemma 6.8 implies that there exists τ = (τ j)j∈Ob J such that (τ,Cond(Ã(−), U))

is a U -quasi-lifting of D̃, and:

cardCond(Ã(j), U) ≤
∑

V ∈[U ]<ω

card
∏

u∈V

A(|u|, j) ≤
∑

V ∈[U ]<ω

κ ≤ κ,

for all j ∈ ObJ . So there exists a lifting of Conc Cond(Ã(−), U)) in V2, and

so there exists a U -quasi-lifting B : J → V2 of D̃ in V2. By Lemma 3.7, V2 is
(Ide(U, |·|)=, J, (κ)u∈Ide(U,|·|)=)-Löwenheim-Skolem, so, by Theorem 6.9, D has a
lifting in V2. �

Using a simple induction argument, we obtain the following corollary.

Corollary 7.4. Let S be the variety of all (∨, 0)-semilattices, let L1 and L2 be

similarity types, let V1 be a variety of L1-algebras, let V2 be a variety of L2-

algebras, let κ be an infinite cardinal, let I1, I2, . . . , In be well-founded trees, and

let J be a category, such that:

(1) V1 is locally ≤ κ+ and V2 is locally ≤ κ.
(2) card I1 + card I2 + · · ·+ card In−1 + cardMorJ ≤ κ.
(3) card In ≤ κ+.

(4) card ↓i ≤ κ for each i ∈ In.
(5) Every diagram of (∨, 0)-semilattices D : J → S, such that cardD(j) ≤ κ+n,

which has a lifting in V1 has a lifting in V2.

Then every diagram of (∨, 0)-semilattices D : I1 × I2 × · · · × In × J → S, such that

cardD(i1, i2, . . . , in, j) ≤ κ for all (i1, i2, . . . , in, j) ∈ I1×I2×· · ·×In×ObJ , which

has a lifting in V1 has a lifting in V2.
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The following corollary is similar to Corollary 7.3. It shows that with finitely
generated congruence-distributive varieties of algebras we can go one step further.

Corollary 7.5. Let S be the variety of all (∨, 0)-semilattices, let L1 and L2 be

similarity types, let V1 be a variety of L1-algebras, let V2 be a finitely generated

congruence-distributive variety of L2-algebras, let I be a lower finite tree, and let J
be a finite poset, such that:

(1) V1 is locally ≤ ℵ0.

(2) card I ≤ ℵ0.

(3) Every functor D : J → S such that cardD(j) ≤ ℵ0 for all j ∈ J , which has

a lifting in V1 has a lifting in V2.

Then every functor D : I × J → S, such that D(i, j) is finite for all (i, j) ∈ I × J ,

which has a lifting in V1 has a lifting in V2.

Proof. Let D : I×J → S be a functor such that D(i, j) is finite for all (i, j) ∈ I×J .
Let A : I × J → V1 be a lifting of D. Denote by αi,j the identity congruence of
A(i, j), for all (i, j) ∈ I × J . By using Lemma 3.6, we can assume that:

cardA(i, j) ≤ ℵ0 +
∑

i′≤i

∑

j′≤j

cardD(i′, j′) ≤ ℵ0

Moreover, by Corollary 4.7, there exists a tight ℵ0-compatible norm-covering

(U, |·|) of I such that cardU ≤ ℵ0. The functor A corresponds to a functor Ã : J →

VI and the functor D corresponds to a functor D̃ : J → VI . Lemma 6.8 implies

that there exists τ = (τ jj∈J ) such that (τ,Cond(Ã(−), U)) is a U -quasi-lifting of D̃,
and:

cardCond(Ã(j), U) ≤
∑

V ∈[U ]<ω

card
∏

u∈V

A(|u|, j) ≤
∑

V ∈[U ]<ω

ℵ0 = ℵ0, for all j ∈ J .

Lemma 3.9 shows that V2 is (Ide(U, |·|)=, J,ℵ0)-Löwenheim-Skolem. By Theo-
rem 6.9, D has a lifting in V2. �

Combining Corollary 7.4 and Corollary 7.5 gives us the following corollary. This
result is similar to Corollary 7.4, but it involves diagrams of finite (∨, 0)-semilat-
tices. This makes it possible to give a bound on the critical point, in case we can
find a finite diagram of finite (∨, 0)-semilattices, indexed by some Boolean algebra,
with a lifting in the first variety but with no lifting in the second one.

Corollary 7.6. Let S be the variety of all (∨, 0)-semilattices, let L1 and L2 be

similarity types, let V1 be a variety of L1-algebras locally ≤ ℵ0, let V2 be a finitely

generated congruence-distributive variety of L2-algebras, and let I1, I2, . . . , In be

finite trees, let In+1 be a lower finite countable tree. If crit(V1; V2) > ℵn, then

every functor D : I1 × I2 × · · · × In+1 → S such that D(i1, i2, . . . , in+1) is finite for

all (i1, i2, . . . , in+1) ∈ I1 × I2 × · · · × In+1, which has a lifting in V1, has a lifting

in V2.

The following corollary is a variant of Corollary 7.3 that involves a class of (∨, 0)-
semilattices and a variety of algebras.

Corollary 7.7. Let S be a class of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving

0 and 1), let L be a similarity type, let V be a variety of L -algebras, let λ < κ be

infinite cardinals, let I be a well-founded tree, and let J be a category, such that:
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(1) λ+ cardMor(J) < κ.
(2) card I ≤ κ.
(3) card(↓i) < cf κ for all i ∈ I.
(4) Every diagram of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices) D : J → S

such that cardD(j) ≤ κ for all j ∈ ObJ , has a lifting in V.

Then every functor D : I × J → S such that cardD(i, j) < κ for all i ∈ I and all

j ∈ ObJ , has a lifting in V.

Proof. By Corollary 4.7 there exists a tight κ-compatible norm-covering (U, |·|) of I
such that cardU ≤ κ. Let D : I × J → S be a diagram of (∨, 0)-semilattices (resp.,
(∨, 0, 1)-semilattices) such that cardD(i, j) < κ for all i ∈ I and all j ∈ ObJ . This

functor corresponds to a functor D̃ : J → SI . But:

cardCond(D̃(j), U) ≤
∑

V ∈[U ]<ω

card
∏

u∈V

D(|u|, j) ≤
∑

V ∈[U ]<ω

κ ≤ κ,

for all j ∈ ObJ . Moreover Cond(D̃(−), U) is a diagram of (∨, 0)-semilattices (resp.,

(∨, 0, 1)-semilattices) of S. So Cond(D̃(−), U) has a lifting A : J → V, and, by

Lemma 6.7, A : J → V is a U -quasi-lifting of D̃. Moreover, by Lemma 3.7, V is
(Ide(U, |·|)=, J, (κ)u∈Ide(U,|·|)=)-Löwenheim-Skolem. Hence, by Theorem 6.9, D has
a lifting in V. �

By an easy induction argument we obtain the following:

Corollary 7.8. Let S be a class of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving

0 and 1), let L be a similarity type, let V be a variety of L -algebras, let κ be an

infinite cardinal, let I1, I2, . . . , In be well-founded trees, and let J be a category,

such that:

(1) V is locally ≤ κ.
(2) card I1 + card I2 + · · ·+ card In−1 + cardMorJ ≤ κ.
(3) card In ≤ κ

+.

(4) card ↓i ≤ κ for each i ∈ In.
(5) Every diagram of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices) D : J →

S, such that cardD(j) ≤ κ+n, has a lifting in V.

Then every diagram of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices) D : I1×I2×
· · · × In × J → S, such that cardD(i1, i2, . . . , in, j) ≤ κ for all (i1, i2, . . . , in, j) ∈
I1 × I2 × · · · × In × ObJ , has a lifting in V.

Corollary 7.9. Let S be a class of (∨, 0)-semilattices (resp., (∨, 0, 1)-semilattices)
closed under finite products and directed unions (resp., directed unions preserving

0, and 1 ), let L be a similarity type, let V be a variety of L -algebras. If every

S ∈ S has a lifting in V, then every diagram of (∨, 0)-semilattices (resp., (∨, 0, 1)-
semilattices) of S, indexed by a finite product of well-founded trees, has a lifting

in V.

Using the result of Lampe in [3], that is, every (∨, 0, 1)-semilattice is the compact
congruence semilattice of a groupoid, we obtain a generalization of his result of
simultaneous representation in [4], to all diagrams of (∨, 0, 1)-semilattices indexed
by a finite poset.
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Corollary 7.10. Let S be the category of all (∨, 0, 1)-semilattices with (∨, 0, 1)-
homomorphisms, let I be a finite poset. Then every diagram D : I → S has a lifting

in the variety of all groupoids.

Proof. We denote by V the variety of all groupoids. Remember that V has all small
colimits (cf. Section 2). For I = 2n, for a positive integer n, the result follows from
Corollary 7.9. Now let I be an arbitrary finite poset and let D : I → S be a diagram
of (∨, 0, 1)-semilattices. Put SX = lim

−→
(D ↾X) = lim

−→i∈X
D(i), for each X ∈ P(I).

Let sX,Y : SX → SY be the canonical morphism, for all X ⊆ Y ⊆ I. Then

D′ : P(I)→ S

X 7→ SX , for all X ∈ P(I)

(X ⊆ Y ) 7→ sX,Y , for all X ⊆ Y ⊆ I

is a functor. As P(I) ∼= 2I , there exists a lifting A′ : P(I)→ V of D′. Moreover, as
SI↓i = D(i) and sI↓i,I↓j = D(i ≤ j) for all i ≤ j in I, the functor

A : I → V

i 7→ A′(I ↓ i), for all i ∈ I

(i ≤ j) 7→ A′(I ↓ i ⊆ I ↓ j), for all i ≤ j ∈ I

is a lifting of D. �

In particular, consider the diagram denoted by D⊲⊳ in [9]. This diagram is a
diagram of finite Boolean semilattices and (∨, 0, 1)-embeddings; it is indexed by
the bounded poset with atoms ai and coatoms bi, for i < 3, and ai < bj for all
i, j < 3. It is proved in [9] that this diagram does not have any congruence-lifting
in any variety of algebras satisfying a nontrivial congruence lattice identity. It was
not known at that time whether D⊲⊳ was congruence-liftable by groupoids. So, by
Corollary 7.10, this is the case.

Define a quasi-partition of a set X as a family (Yk)k∈K of subsets of X such that
X =

⋃
k∈K Yk and Yk ∩ Yl = ∅ for all k 6= l in K (we do not require the Yks to be

nonempty).
The following result is a compactness-type property for liftings of diagrams.

Theorem 7.11. Let S be the class of all distributive (∨, 0)-semilattices, let V be

a finitely generated congruence-distributive variety of algebras, let J be a small

category, such that there are at most finitely many arrows between any two objects,

let D : J → S be a functor such that D(j) is finite for all j ∈ J . If every finite

subdiagram of D has a lifting in V, then D has a lifting in V.

Proof. Let (Kj)j∈J be a family of finite subsets of V such that if ConcA is isomor-
phic to D(j), for some A ∈ V and j ∈ ObJ , then A is isomorphic to an element
of Kj .

For every finite subset I of ObJ , we denote by I the full subcategory of J with
class of objects I. Let AI : I → V be a functor and let ξI = (ξiI)i∈Ob I : Conc ◦A→
D ↾ I be a natural isomorphism. We can assume that AI(i) ∈ Ki for all i ∈ I.

Put QS = {P ∈ [ObJ ]<ω | S ⊆ P}, and denote by F the filter on [ObJ ]<ω

generated by {QS | S ∈ [ObJ ]<ω}. As QS1 ∩ QS2 = QS1∪S2 for all S1, S2 ∈
[ObJ ]<ω, the filter F is proper, so there exists an ultrafilter U such that F ⊆ U.
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Let j ∈ ObJ . The family ({P ∈ Q{j} | AP (j) = A})A∈Kj
is a finite quasi-

partition of Q{j}, so there exists a unique Aj ∈ Kj such that Rj = {P ∈ Q{j} |
AP (j) = Aj} belongs to U.

Let f : i→ j be an arrow of J . The family ({P ∈ Ri∩Rj | AP (f) = s})s : Ai→Aj

is a finite quasi-partition of Ri ∩Rj ∈ U, so there exists a unique sf : Ai → Aj such
that Sf = {P ∈ Ri ∩Rj | AP (f) = sf} belongs to U.

Let i ∈ ObJ , let P ∈ Sidi
, so AP (i) = Ai and idAi

= idAP (i) = AP (idi) = sidi
.

Let f : i → j and g : j → k be two arrows of J , let P ∈ Sf ∩ Sg ∩ Sg◦f . So
AP (i) = Ai, AP (j) = Aj , and AP (k) = Ak. Moreover:

sg ◦ sf = AP (g) ◦AP (f) = AP (f ◦ g) = sg◦f .

Thus we obtain a functor:

A : J → V

i 7→ Ai for all i ∈ ObJ

f 7→ sf for all f ∈MorJ

For each j ∈ ObJ , the family ({P ∈ Rj | ξ
j
P = φ})φ : Conc A(j)→D(j) is a finite

quasi-partition of Rj , so there exists a unique φj : Conc A(j)→ D(j) such that the

set Tj = {P ∈ Rj | ξ
j
P = φj} belongs to U.

Let f : i→ j be an arrow of J , let P ∈ Sf ∩ Ti ∩ Tj . So the following equalities
hold:

φj ◦ Conc A(f) = ξjP ◦ Conc AP (f) = D(f) ◦ ξiP = D(f) ◦ φi,

and so (φj)j∈Ob J : Conc ◦A → D is a natural isomorphism. Thus D has a lifting
in V. �

The following corollary gives us, in particular, a characterization of all pairs of
finitely generated congruence-distributive varieties with uncountable critical point.

Corollary 7.12. Let V1 be a locally finite variety, let V2 be a finitely generated

congruence-distributive variety. Then the following statements are equivalent:

(1) crit(V1; V2) > ℵ0.

(2) Every diagram of finite (∨, 0)-semilattices indexed by a tree which has a

lifting in V1 has a lifting in V2.

(3) Every diagram of finite (∨, 0)-semilattices indexed by a finite chain which

has a lifting in V1 has a lifting in V2.

Proof. If (1) holds, then by Corollary 7.5 every diagram of finite (∨, 0)-semilattices
indexed by a finite tree which has a lifting in V1 has a lifting in V2. Thus, by
Theorem 7.11, the statement (2) holds.

Now assume that (3) holds. By Theorem 7.11, every diagram of finite (∨, 0)-
semilattices indexed by ω which has a lifting in V1 has a lifting in V2. Let D be a
countable distributive (∨, 0)-semilattice. Let A ∈ V1 such that ConcA ∼= D. Using
Lemma 3.6 we can assume that A is countable. So we can write A =

⋃
n∈ω An,

where each An is a finite subalgebra of A, and Am ⊆ An for all m ≤ n in ω.
Denote by fm,n : Am → An the inclusion map, for all m ≤ n in ω. Put A =
((An)n∈ω, (fm,n)m≤n∈ω). So we get a diagram B = ((Bn)n∈ω, (gm,n)m≤n∈ω) in V2

together with a natural isomorphism ξ : Conc ◦A → Conc ◦B. Hence, as the Conc

functor preserves direct limits,

ConcA ∼= Conc(lim−→
A) ∼= lim

−→
(Conc ◦A) ∼= lim

−→
(Conc ◦B) ∼= Conc(lim−→

B). �
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Corollary 7.13. Let V1 be a locally finite variety, let V2 be a finitely generated

congruence-distributive variety. Then the following statements are equivalent:

(1) crit(V1; V2) ≥ ℵω.
(2) Every diagram of finite (∨, 0)-semilattices indexed by {0, 1}n, for a natural

number n, which has a lifting in V1 has a lifting in V2.

(3) Every diagram of finite (∨, 0)-semilattices indexed by a finite (∨, 0)-semi-

lattice which has a lifting in V1 has a lifting in V2.

(4) Every diagram of finite (∨, 0)-semilattices indexed by a (∨, 0)-semilattice

which has a lifting in V1 has a lifting in V2.

(5) Every diagram of (∨, 0)-semilattices indexed by a (∨, 0)-semilattice which

has a lifting in V1 has a lifting in V2.

(6) crit(V1; V2) =∞, that is, Conc V1 ⊆ Conc V2.

Proof. By Corollary 7.6, the statement (1) =⇒ (2) holds. By Theorem 7.11, the
statement (3) =⇒ (4) holds. The statements (5) =⇒ (6) and (6) =⇒ (1) are
obvious. Denote by S the class of all distributive (∨, 0)-semilattices. Now assume
that (2) holds. Let L be a finite (∨, 0)-semilattice, let D be a diagram of finite
(∨, 0)-semilattices indexed by L, let A : L→ V1 be a lifting of D. Put:

D′ : P(L)→ S

X 7→ D(
∨
X)

X ⊆ Y 7→ D(
∨
X ≤

∨
Y ).

This is a functor. Moreover, the functor A′ : P(L)→ V1 defined by

X 7→ A(
∨
X)

X ⊆ Y 7→ A(
∨
X ≤

∨
Y )

is a lifting of D′. So, by (2), there exists a lifting B′ : P(L)→ V2 of D′. Moreover:

B : L→ V2

x 7→ B′(L ↓ x) for all x ∈ L

(x ≤ y) 7→ B′(L ↓ x ⊆ L ↓ y) for all x ≤ y ∈ L

is a lifting of D. This completes the proof of (3).
Now assume (4). Let L be a (∨, 0)-semilattice, let D : L → S be a functor, let

A : L→ V1 be a lifting of D. Fix a ∈ A(0). Let:

G ={(Qx)x∈L | Qx is a finite subalgebra of A(x), for all x ∈ L,

A(x ≤ y)(Qx) ⊆ Qy, for all x ≤ y ∈ L, and a ∈ Q0}

partially ordered by (Qx)x∈L ≤ (Q′
x)x∈L if Qx ⊆ Q′

x for all x ∈ L. The subalgebra
〈A(0 ≤ x)(a)〉A(x) of A(x) generated by A(0 ≤ x)(a) is finitely generated, thus
finite (because V1 is locally finite). Thus G is a (∨, 0)-semilattice with smallest
element

(
〈A(0 ≤ x)(a)〉A(x)

)
x∈L

.
Let:

A′ : G× L→ V1

(Q, x) 7→ Qx

((Q, x) ≤ (Q′, x′)) 7→ (A(x ≤ x′) ↾Qx : Qx → Qy)



CRITICAL POINTS 27

Consider Ã′ : L→ VG1 as defined in Section 2. Then:

lim−→ Ã′(x) =
⋃

Q∈G

A′(Q, x) = A(x), for all x ∈ L

lim−→ Ã′(x ≤ y) =
⋃

Q∈G

A′((Q, x) ≤ (Q, y)) = A(x ≤ y), for all x ≤ y ∈ L

As Conc A′ has a lifting in V1, it has also a lifting B′ : G× L in V2. Let

B = lim
−→
◦B̃′ : L→ V2.

As Conc preserves direct limits, the following natural isomorphisms hold:

D ∼= Conc ◦A

∼= Conc ◦ lim
−→
◦Ã′

∼= lim
−→
◦Conc ◦Ã

′

∼= lim−→◦Conc ◦B̃
′

∼= Conc ◦ lim
−→
◦B̃′

∼= Conc ◦B. �

Corollary 7.14. Let V1 be a locally finite variety, let V2 be a finitely generated

congruence-distributive variety. Then exactly one of the following statements holds:

(1) crit(V1; V2) is finite.

(2) crit(V1; V2) = ℵn, for some natural number n.
(3) crit(V1; V2) =∞, that is, Conc V1 ⊆ Conc V2.

8. A pair of varieties with critical point ℵ1

Lemma 8.1. Let A be a finite algebra with ConA distributive, let α ∈ ConA, and

put Q = {θ ∈ M(ConA) | α 6≤ θ}. If all A/θ, for θ ∈ Q, are simple, then the

canonical map ConA→ Con(A/α) ×
∏
θ∈QCon(A/θ) is an isomorphism.

Proof. As Con(A/ξ) ∼= ↑ξ, for all ξ ∈ ConA, it suffices to prove that the map
j : ConA → (↑α) ×

∏
θ∈Q(↑θ), ξ 7→ (ξ ∨ α, (ξ ∨ θ)θ∈Q) is an isomorphism. If

α ∧
∧
Q 6= 0, then there exists θ ∈ M(ConA) such that α ∧

∧
Q 6≤ θ, thus α 6≤ θ

(thus θ ∈ Q) and
∧
Q 6≤ θ, a contradiction; whence α ∧

∧
Q = 0. By using the

distributivity of ConA, it follows that j is one-to-one.
We now prove that j is surjective. Let β ∈ ↑α, let γθ ∈ ↑θ for all θ ∈ Q. Put

ξ = β ∧
∧
θ∈Q γθ. We have α ∨ β = β and α ∨ θ = A×A for all θ ∈ Q, so:

ξ ∨ α = (β ∧
∧

θ∈Q

γθ) ∨ α = (β ∨ α) ∧
∧

θ∈Q

(γθ ∨ α) = β ∧
∧

θ∈Q

(A× A) = β

With a similar argument we obtain ξ ∨ θ = γθ for all θ ∈ Q, thus j is surjective.
Therefore, j is an isomorphism. �

We say that a class V of algebras of the same similarity type is finitely semisimple,
if every finite subdirectly irreducible member of V is simple. An important example
of a finitely semisimple variety is the variety of all modular lattices.
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Lemma 8.2. Let V1 and V2 be congruence-distributive varieties of algebras of the

same similarity type, with V1 finitely semisimple. We further assume that for every

finite non-simple algebra A ∈ V1, if A embeds into a simple algebra of V1, then A
embeds into a simple algebra of V2.

Let f : A → A′ be a morphism between finite algebras of V1. We denote by α
(resp., α′) the smallest congruence of A (resp., A′) such that A/α ∈ V2 (resp.,
A′/α′ ∈ V2), with canonical projection πα : A։A/α (resp., π′

α′ : A′ ։A′/α′). Let

B ∈ V2, let p : B ։ A/α be a surjective morphism, and let ξ : ConcA → ConcB
be an isomorphism such that (Conc p) ◦ ξ = Conc πα. Then there are B′ ∈ V2, a

morphism g : B → B′, a surjective morphism p′ : B′ ։A′/α′, and an isomorphism

ξ′ : ConcA
′ → ConcB

′, such that the following diagram is commutative:

ConcA
Conc f //

Conc πα

xxqqqqqqqqqq

ξ∼=

��

ConcA
′

ξ′∼=

��

Conc π
′
α′

&&NNNNNNNNNNN

Conc(A/α) Conc(A
′/α′)

ConcB

Conc p

ffffMMMMMMMMMM
Conc g // ConcB

′

Conc p
′

88 88ppppppppppp

If there is at least one simple algebra in V2, then Conc ◦A has a lifting in V2,

for every diagram A : ω → V1 of finite algebras,

Moreover, if V1 is locally finite, then crit(V1; V2) ≥ ℵ1.

Proof. We denote by πθ : A։A/θ (resp., π′
θ : A′ ։A′/θ) the canonical projection

for each θ ∈ ConA (resp., θ ∈ ConA′). The algebra A/f−1(α′) is isomorphic
to a subalgebra of A′/α′ ∈ V2, thus A/f−1(α′) ∈ V2, so f−1(α′) ⊇ α, and so
Conc(f)(α) ⊆ α′, thus the morphism gα : A/α → A′/α′, x/α 7→ f(x)/α′ is well-
defined, and the following diagram is commutative:

A
f

−−−−→ A′

πα

y π′
α′

y

A/α
gα

−−−−→ A′/α′

Put hα = gα ◦ p.
Put Q = {θ ∈M(ConA′) | A′/θ 6∈ V2}. For each θ ∈ Q, the algebra A/f−1(θ) is

isomorphic to a subalgebra of A′/θ which is a simple algebra of V1. If A/f−1(θ) is
not simple, then A/f−1(θ) ∈ V2, and A/f−1(θ) is a subalgebra of a simple algebra
of V2. So one of the following statements holds:

(1) The algebra A/f−1(θ) is a subalgebra of a simple algebra in V2.
(2) The algebra A/f−1(θ) is simple and is not in V2.

If A/f−1(θ) 6∈ V2, let Bθ = B/ξ(f−1(θ)), which is a simple algebra, and let
hθ : B ։ Bθ be the canonical projection. If A/f−1(θ) ∈ V2, then there are a
simple algebra Bθ ∈ V2 and an embedding gθ = A/f−1(θ) →֒ Bθ. Moreover, as
A/f−1(θ) ∈ V2, the containment f−1(θ) ⊇ α holds. Denote by pθ : A/α։A/f−1(θ)
the canonical projection. Put hθ = gθ ◦ pθ ◦ p.

Let φθ : Conc(A
′/θ) → ConcBθ be the only possible isomorphism, put ξ′θ =

φθ ◦ Conc π
′
θ, for all θ ∈ Q. Let ξ′α′ = Conc π

′
α′ .
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The algebra B′ = A′/α′ ×
∏
θ∈QBθ belongs to V2. Define

g : B → B′

x 7→ (hα(x), (hθ(x))θ∈Q).

Observe that as ConB′ ∼= Con(A′/α′)×
∏
θ∈QCon(Bθ) is finite, every congruence

of B′ is compact, so ConcB
′ = ConB′, thus we can define a map

ξ′ : ConcA
′ → ConcB

′

x 7→ ξ′α′(x)×
∏

θ∈Q

ξ′θ(x).

By Lemma 8.1, the canonical map ψ : ConcA
′ → Conc(A

′/α′)×
∏
θ∈QConc(A

′/θ)

is an isomorphism, the map idConc(A′/α′) ×
∏
θ∈Q φθ is also an isomorphism, so the

map ξ′ = (idConc(A′/α′) ×
∏
θ∈Q φθ) ◦ ψ is an isomorphism.

Denote by p′ : B′ ։ A′/α′ the canonical projection and by p′θ : B′ → Bθ the
canonical projection, for all θ ∈ Q.

The equality (Conc p
′) ◦ ξ′ = ξ′α′ is obvious. Moreover p′ ◦ g = gα ◦ p, so the

following equalities hold:

(Conc p
′) ◦ (Conc g) ◦ ξ = (Conc gα) ◦ (Conc p) ◦ ξ = (Conc gα) ◦ Conc πα. (8.1)

As gα ◦ πα = π′
α′ ◦ f we obtain

(Conc p
′) ◦ (Conc g) ◦ ξ = (Conc π

′
α′) ◦ Conc f = (Conc p

′) ◦ ξ′ ◦ Conc f.

Let θ ∈ Q, then the following equalities hold:

(Conc p
′
θ) ◦ ξ

′ ◦ (Conc f) = ξ′θ ◦ (Conc f) = φθ ◦ (Conc π
′
θ) ◦ (Conc f).

Assume that A/f−1(θ) 6∈ V2. Let β ∈ ConcA, then the following equivalences
hold:

((Conc p
′
θ) ◦ ξ

′ ◦ (Conc f))(β) = 0⇐⇒ Conc(π
′
θ ◦ f)(β) = 0

⇐⇒ β ⊆ f−1(θ)

⇐⇒ ξ(β) ⊆ ξ(f−1(θ))

⇐⇒ (Conc hθ)(ξ(β)) = 0

⇐⇒ ((Conc p
′
θ) ◦ (Conc g) ◦ ξ)(β) = 0.

Therefore, as Bθ is simple, we obtain

(Conc p
′
θ) ◦ ξ

′ ◦ (Conc f) = (Conc p
′
θ) ◦ (Conc g) ◦ ξ,

for all θ ∈ Q such that A/f−1(θ) 6∈ V2. (8.2)

Assume that A/f−1(θ) ∈ V2. The following equalities hold:

(Conc p
′
θ) ◦ (Conc g) ◦ ξ = (Conc hθ) ◦ ξ

= (Conc gθ) ◦ (Conc pθ) ◦ (Conc p) ◦ ξ

= (Conc gθ) ◦ (Conc pθ) ◦ (Conc πα)

= (Conc gθ) ◦ (Conc πf−1(θ)).
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Let β ∈ ConcA, the following equivalences hold:

(Concp
′
θ) ◦ (Conc g) ◦ ξ(β) = 0

⇐⇒ (Conc gθ) ◦ (Conc πf−1(θ))(β) = 0

⇐⇒ (Conc πf−1(θ))(β) = 0 as gθ is one-to-one

⇐⇒ β ⊆ f−1(θ)

⇐⇒ Conc(π
′
θ ◦ f)(β) = 0

⇐⇒ (Conc p
′
θ) ◦ ξ

′ ◦ (Conc f)(β) = 0.

Therefore, as Bθ is simple,

(Conc p
′
θ) ◦ ξ

′ ◦ (Conc f) = (Conc p
′
θ) ◦ (Conc g) ◦ ξ,

for all θ ∈ Q such that A/f−1(θ) ∈ V2. (8.3)

As ConcB
′ →֒Conc(A/α

′)×
∏
θ∈QConcBθ, by (8.1), (8.2), and (8.3) the following

diagram is commutative:

ConcA
Conc f
−−−−→ ConcA

′

ξ

y ξ′
y

ConcB
Conc g
−−−−→ ConcB

′

Let S be a simple algebra in V2, let A : ω → V1 be a diagram of finite al-
gebras, let αn be the smallest congruence of A(n) such that A(n)/αn ∈ V2, let
πnθ : A(n) ։ A(n)/θ be the canonical projection, for all θ ∈ Con A(n). Let Qn =
{θ ∈ M(Conc A(n)) | A(n)/θ 6∈ V2}, for all n ∈ ω. Let φθ : Conc(A(0)/θ) → S
be the only possible isomorphism. Let ξα0 = Conc π

0
α0

, let ξθ = φθ ◦ Conc π
0
θ , for

all θ ∈ Q0. Put B0 = (A(0)/α0) × SQ0 , let p0 : B0 ։ A(0)/α0 be the canonical
projection. By Lemma 8.1, the morphism

ξ0 : Conc A(0)→ ConcB0

x 7→ ξα0(x)×
∏

θ∈Q0

ξθ(x)

is an isomorphism. Moreover (Conc p0) ◦ ξ0 = ξα0 = Conc π
0
α0

. Thus, applying
by induction the first part of the lemma, we construct a family (Bn)n∈ω of al-
gebras of V2, a family (gn : Bn → Bn+1)n∈ω of homomorphisms, and a family
(ξn : Conc A(n) → Bn)n∈ω of isomorphisms such that the following diagram is
commutative:

Conc A(n)
Conc A(n≤n+1) //

ξn

��

Conc A(n+ 1)

ξn+1

��
ConcBn

Conc gn

// ConcBn+1

(8.4)

Then the functor

B : ω → V2

n 7→ Bn

(n ≤ m) 7→ gm−1 ◦ gm−2 ◦ · · · ◦ gn
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is a lifting of Conc ◦A in V2.
Now assume that V1 is locally finite. Let A ∈ V1 such that ConcA is countable.

Taking a sublattice, we can assume that A is countable (cf. Lemma 3.6) and so it
is the direct limit of a diagram A : ω → V1 of finite algebras. So Conc ◦A has a
lifting in V2, thus, as Conc preserves direct limits, ConcA has a lifting in V2. So
crit(V1; V2) > ℵ0. �

Remark 8.3. Let f : K →֒ L be a one-to-one morphism of finite modular lattices,
such that K and L have the same length; then Conc f is surjective.

Corollary 8.4. Let V1 be the variety generated by T1, let V2 be the variety generated

by T2, T3, and T4, where T1, T2, T3, and T4 are the lattices in Figure 1. Then

crit(V1; V2) = ℵ1. This result extends to the corresponding varieties of bounded

lattices (resp., lattices with zero).

Observe that the varieties V1 and V2 are self-dual.

Figure 1. The lattices T1, T2, T3, and T4.

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t t

t t t t t

t t t

t

a1 a2 a3 a4

a5

a6

T1

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t

t t t t t

t t t

t

a1 a2 a3 a4

a6

T2

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t t

t t t t t

t t

t

a1 a2 a3 a4

a5

T3

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t t

t t t t

t t t

t

t1

t2

a1 a2 a4

a5

a6

T4

Proof. The lattice T1 is generated by a1, a2, a3, a4, a5, and a6 which are all doubly
irreducible. So the maximal sublattices of T1 are T1−{ak}, for all 1 ≤ k ≤ 6. As all
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these lattices are isomorphic to either T2, T3, or T4, the assumptions of Lemma 8.2
are satisfied, thus crit(V1; V2) ≥ ℵ1.

Put D0 = 24, D1 = D2 = 22, D3 = 2. Put:

φ1 : D0 → D1

(α, β, γ, δ) 7→ (α ∨ β, γ ∨ δ)

φ2 : D0 → D2

(α, β, γ, δ) 7→ (α ∨ δ, β ∨ γ)

ψ : 22 → D3

(α, β) 7→ α ∨ β

Let
−→
D be the following commutative diagram:

D3

D1

ψ
==||||||||

D2

ψ
aaBBBBBBBB

D0

φ1

aaBBBBBBBB φ2

==||||||||

Put S1 = T1 − {a2, a3}, and S2 = T1 − {a5, a6}. Then S1 and S2 are sublattices
of T1; put S0 = S1 ∩ S2. Let i1 : S0 → S1, i2 : S0 → S2, j1 : S1 → T1, j2 : S2 → T1

be the respective inclusion mappings. Then the following diagram is a lifting of
−→
D

in V1.

T1

S1

j1
>>}}}}}}}

S2

j2
``AAAAAAA

S0

i1

``AAAAAAA i2

>>}}}}}}}

Assume that
−→
D has a lifting in V2:

B3

B1

g1
>>||||||||

B2

g2
``BBBBBBBB

B0

f1

``BBBBBBBB f2

>>||||||||

Moreover let (ξk : Dk → ConBk)0≤k≤3 be the corresponding isomorphism of dia-
grams. The (∨, 0)-homomorphisms φ1, φ2, and ψ separate 0, thus f1, f2, g1, and g2
are one-to-one, and so we can assume that they are inclusion maps of sublattices.
The lattice B3 is simple, hence B3 is of length at most four. As ConcB0

∼= 24,
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Figure 2. The lattices S0, S1, and S2.

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t

t t t

t t

t

a1 a4

S0

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t t

t t t

t t t

t

a1 a4

a5

a6

S1

@
@

@
@

@
@

@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

t

t t

t t t t t

t t

t

a1 a2 a3 a4

S2

all lattices B0, B1, B2, and B3 have length four. As T2, T3, T4, T4 − {a4} are, up to
isomorphism, all simple lattices of V2 of length four, we can assume, by taking a
larger lattice, that B3 ∈ {T2, T3, T4}. Let i ∈ {1, 2}. If K is a sublattice of length
four of B3 such that Bi ⊆ K ⊆ B3 and ConcK ∼= 22, by Remark 8.3 the map
Conc s : ConcBi → ConcK is surjective, where s : Bi → K denotes the inclusion
map. Hence Conc s is an isomorphism. So, taking larger lattices, we can also as-
sume that B1 and B2 are maximal for containment, among sublattices of B3, with
respect to the property of having a congruence lattice isomorphic to 22 (∗).

Let h : B0 → B1∩B2, k1 : B1∩B2 → B1, and k2 : B1∩B2 → B2 be the respective
inclusion maps. Let θ1 = ξ0(1, 0, 0, 0), θ2 = ξ0(0, 1, 0, 0), θ3 = ξ0(0, 0, 1, 0), and
θ4 = ξ0(0, 0, 0, 1). So the following equalities hold:

(Con f1)(θ1) = (Con f1)(ξ0(1, 0, 0, 0)) = ξ1(φ1(1, 0, 0, 0)) = ξ1(1, 0).

Similarly, (Con f1)(θ3) = (Con f1)(θ4) = ξ1(0, 1), so (Con f1)(θ1) 6≤ (Con f1)(θ3)
and (Con f1)(θ1) 6≤ (Con f1)(θ4), but f1 = k1 ◦h, so (Conh)(θ1) 6≤ (Conh)(θ3) and
(Conh)(θ1) 6≤ (Conh)(θ4). Moreover (Con f2)(θ1) = ξ1(1, 0) and (Con f2)(θ2) =
ξ1(0, 1), so (Conh)(θ1) 6≤ (Conh)(θ2). Similarly, (Conh)(θi) 6≤ (Conh)(θj), for all
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i 6= j in {1, 2, 3, 4}, and so Con(B1 ∩B2) has a four-element antichain. As B1 ∩B2

modular lattice of length four, Con(B1 ∩B2) ∼= 24.
The equalities (Con f1)(ξ0(0, 0, 1, 1)) = ξ1(φ1((0, 0, 1, 1))) = ξ1(0, 1) hold, so we

get an embedding B0/ξ0(0, 0, 1, 1) → B1/ξ1(0, 1), but Con(B0/ξ0(0, 0, 1, 1)) ∼= 22,
so B1/ξ1(0, 1) is a lattice of length at least two. Similarly, B1/ξ1(1, 0) is a lattice
of length at least two. So all subdirectly irreducible quotients of B1 have length
at least two. The same holds for B2. Thus neither B1 nor B2 have any quotient
isomorphic to 2 (∗∗).

Assume that B3 = T2. As T2 is generated by a1, a2, a3, a4, and a6, which are all
doubly irreducible, the maximal sublattices of T2 are T2−{ak}, for k ∈ {1, 2, 3, 4, 6},
all these lattices have a congruence lattice isomorphic to 22. Thus the maximal sub-
lattices of T2 with respect to the property of having a congruence lattice isomorphic
to 22 are T2 − {ak}, for k ∈ {1, 2, 3, 4, 6}. But T2 − {ak} has a quotient isomor-
phic to 2, for all k ∈ {1, 2, 3, 4}. So by (∗) and (∗∗), B1 = B2 = T2 − {a6}, thus
24 ∼= Con(B1 ∩B2) ∼= 22. So B3 6= T2. Using a dual argument we get B3 6= T3.

Assume that B3 = T4. The maximal sublattices of T4 with respect to the
property of having a congruence lattice isomorphic to 22 are T4 − {ak}, for all
k ∈ {1, 2, 5, 6}, the lattice T4 − {a4, t1}, and the lattice T4 − {a4, t2}. Moreover
T4−{a5}, T4−{a6}, T4−{a4, t1} and T4 −{a4, t2} all have a quotient isomorphic
to 2, thus, by (∗) and (∗∗) both B1 and B2 belong to {T4 − {a1}, T4 − {a2}}. But
Con(T4 − {a1}) ∼= Con(T4 − {a2}) ∼= Con(T4 − {a1, a2}) ∼= 22, which leads to a

contradiction. Thus ~D has no lifting in V2. Thus it follows from Corollary 7.6 that
crit(V1; V2) ≤ ℵ1.

All morphisms in this proof preserve 0 and 1, so

crit(V0,1
1 ; V0,1

2 ) = crit(V0
1; V

0
2) crit(V0,1

1 ; V2) = ℵ1,

where V
0,1
1 (resp., V

0,1
2 ) denotes the variety of bounded lattices generated by T1

(resp., T2, T3 and T4); and similarly for V0
1, and so on. �

9. Conclusion

Many of the results in this paper can be formulated in purely categorical terms,
thus considerably expanding their range of application, at the expense of a notice-
ably heavier preparatory work. Furthermore, for a given poset I, the existence of
a norm-covering of I with properties enabling such categorical extensions gives rise
to interesting combinatorial problems. These developments will be presented in a
further paper.

The cardinals ℵ0, ℵ1, and ℵ2 are critical points of some pairs of varieties of
lattices, but we do not know whether there exist two finitely generated varieties of
lattices with critical point ℵ3.
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[9] J. Tůma and F. Wehrung, Congruence lifting of diagrams of finite Boolean semilattices

requires large congruence varieties, Internat. J. Algebra Comput. 16, no. 3 (2006), 541–550.
[10] F. Wehrung, A solution to Dilworth’s congruence lattice problem, Adv. Math. 216, no. 2

(2007), 610–625.
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