CATEGORIES OF PARTIAL ALGEBRAS FOR CRITICAL
POINTS BETWEEN VARIETIES OF ALGEBRAS

PIERRE GILLIBERT

ABSTRACT. We denote Conc A the (V,0)-semilattice of all finitely generated
congruences of each algebra A. A lifting of a (V, 0)-semilattice S is an algebra A
such that S = Conc A.

The aim of this work is to give a categorical theory of partial algebras
endowed with a partial subalgebra together with a semilattice-valued distance,
that we call gamps. This part of the theory is formulated in any variety of
(universal) algebras. The forgetful functor from the category of gamps to the
category of (V,0)-semilattice is similar to the Con¢ functor.

Let V and W be varieties of algebras (on a finite similarity type). Let P
be a finite lattice of order-dimension d > 0. Let A be a P-indexed diagram of
finite algebras in V. If Conc oA has no partial lifting in the category of gamps
of W, then there is an algebra A € V of cardinal X;_; such that Conc A has
no lifting in 'W.

A similar result was already known for diagrams A such that Conc oA has
no lifting in W, however the algebra A, constructed in this case, has cardinality
Ng.

The gamps are also used to study congruence-preserving extensions. Denote
by M3 the variety generated by the lattice of length two with three atoms. We
construct a lattice A € M3 of cardinal N1 with no congruence n-permutable,
congruence-preserving extension, for each n > 2.

1. INTRODUCTION

For an algebra A we denote Con A the lattice of all congruences of A under
inclusion. Given x,y € A, we denote O 4(z,y) the smallest congruence of A that
identify = and y, such congruence is called principal. A congruence is finitely
generated if it is a finite join of principal congruences. The lattice Con A is algebraic
and the compact element of Con A are the finitely generated congruences.

The lattice Con A is determined by Con. A the (V,0)-semilattice of compact
congruences of A. In this paper we mostly refer to Con. A. If Con, A is isomorphic
to a (V,0)-semilattice S, we call A a lifting of S.

Given a class of algebras X, the congruence class of X, denoted by Con, K, is the
class of all (V,0)-semilattice with a lifting in K. In general, even if X is a variety
of algebras, there is no good description of Con, XK. The negative solution to the
congruence lattice problem (CLP) in [16] is a good example of the difficulty to find
such description.
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2 P. GILLIBERT

The study of CLP led to the following related questions. Fix two classes of
algebras V and 'W.

(Q1) Given A €V, does there exists B € W such that Con, A = Con, B?
(Q2) Given A € V, does there exists B € W a congruence-preserving extension
of A?

A positive answer to (Q1) is equivalent to Con.V C Con. W. The “default of
inclusion” is measured in the following way (cf. [15, 3]), the critical point between V
and W is defined as

min{card S | S € (Con, V) — (Con. W)}, if Con.V ¢ Con, W
00, if Con.V C Con. W

crit(V; W) = {

This critical point has been already studied, for different families of varieties of
lattices in [10, 11, 3].

We now give an example of (Q2). Every countable locally finite lattice has a rela-
tively complemented, congruence-preserving extension (cf. [7]). In particular every
countable locally finite lattice has a congruence-permutable, congruence-preserving
extension. However, in every non-distributive variety of lattices, the free lattice
on N; generators has no congruence-permutable, congruence-preserving extension
(cf. [5, Chapter 5]). A precise answer to (Q2) also depends on the cardinal of A.

In order to study a similar problem Pudldk in [13] uses an approach based on
lifting of diagrams. The assignment A — Con¢ A can be extended to a functor. It
leads to the following questions:

(Q1’) Given a diagram A in V, does there exists a diagram B in W such that
Cong 0A = Cong oB?

(Q2’) Given a diagram A in V, does there exists a diagram B in W which is a
congruence-preserving extension of A?

The functor Con. preserves directed colimits, thus, in many cases, a positive
answer for the finite case of (Q1’) implies a positive answer to (Q1).

Proposition 1.1. Assume that V and W are varieties of algebras. If V is locally
finite and for all lattice-indexed dmgmm A of finite algebras in 'V there exists B a
diagram in W such that Con, oA = Con, oB, then (Q1) has a positive answer.

In this proposition, we consider infinite diagrams of finite algebras. However if W
is finitely generated and congruence-distributive, a compactness argument allow to
restrict the hypothesis to finite diagrams of finite algebras.

In order to study the converse of this proposition, the condensate of a diagram
of algebras has introduced in [3], it allows to turn a diagram counter-example of
(Q1’) to a counter-example of (Q1).

Theorem 1.2. Assume that V and W are varieties of algebras. Let P be a finite
lattice. Let A be a P-indexed diagram in V. If Con, oA is not liftable in 'W then
there is a condenstat A €V of A, such that Cong A is not liftable in 'W.

Moreover if W has a countable similarity type and all algebras of/T are countable,
then the condensate A can be choose of cardinal Ry, where d is the order-dimension
of P, hence crit(V; W) < Ng.

If all algebra of/f are finite and W is finitely generated and congruence-distributive,
then A can be choose of cardinal Xg_1, so crit(V; W) < Rg_q.
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The cardinal, in case W is finitely generated and congruence-distributive, is
optimal in the following sense: There are finitely generated varieties of lattices V
and W, such that all countable (V,0)-semilattice liftable in V is liftable in W and
there is a square-indexed diagram of (V,0)-semilattice, that has a lifting in V, but
no lifting in 'W. In particular there is a (V,0)-semilattice of cardinal ¥; that is
liftable in V but not liftable in W, thus crit(V; W) = Ry. This example appears in
[3, Section 8].

Later, the condensate has been generalized in [5] in a large categorical context.
The best bound of Theorem 1.2 is obtained in a more general case (cf. [5, Theo-
rem 4-9.2]), namely if W is both congruence-proper (cf. [5, Definition 4-8.1]) and
locally finite, for example W is a finitely generated congruence-modular variety.
Using the tools introduced in this paper, we give a new version (cf. Theorem 9.6),
we assume that W is congruence-proper and has finite similarity type.

This categorical version of condensate can also apply to turn a counter-example
of (Q2') to a counter-example of (Q2). For example in [5, Chapter 5] we give a
square A of finite lattices, that has no congruence-permutable, congruence-preserving
extension. A condensate of this square has no congruence-permutable, congruence-
preserving extension.

However a direct approach would lead to a condensate of cardinal Ns. In order to
find a lattice of cardinal 8; with no congruence-permutable, congruence-permuting
extension, we define the category Metr of semilattice-metric spaces and the cate-
gory Metr™ of semilattice-metric covers (cf. [5, Chapter 5]). We also give functors
®: L — Metr and ¥: Metr® — Metr. There is no diagram B in Metr* such that
®oA > WoB. It follows from the Condensate Lifting Lemma (cf. [5]) that there is
a condensate A of A, such that card A = Ny, and A has no congruence-permutable,
congruence-preserving extension.

The largest part of this paper is the introduction of pregamps and gamps, it is
a generalization of semilattice-metric spaces and semilattice-metric covers given in
[6, Chapter 5]. The category of gamps of a variety V has properties similar to a
finitely generated congruence-distributive variety.

A pregamp is a triplet A = (A, 6, S), where A is a partial algebra, S is a (V,0)-
semilattice and §: A2 — S is a distance, compatible with the operations. A typical
example of pregamp is (4,04, Con, A), for an algebra A. This generalises the
notion of congruences to partial algebras.

A gamp A is a pregamp (A, 6, S) with a partial subalgebra A* of A. There are
many natural properties that a gamp can satisfy (cf. Section 7), for example A is
full if all operations with parameters in A* can be evaluated in A. A morphism
of gamps is a morphism of partial algebras with a morphism of (V,0)-semilattices
satisfying a compatibility condition with the distances (cf. Definition 6.1).

The class of all gamps (on a given similiraty type) with morphisms of gamps
form a category. Denote C the forgetful functor from the category of gamps to the
category of (V, 0)-semilattice. Given a gamp B, C(B) should be understood as the
congruences of B. A partial lifting of a diagram S of (V, 0)-semilattice is a diagram
B of gamps, with some aditional properties, such that C o Bx~g.

The category of gamps have properties similar to locally finite, congruence-
proper, varieties. Let S be a finite (V,0)-semilattice, let B be a gamp such that
C(B) = S, there is (arbitrary large) finite subgamp B’ of B such that C(B') = S.
There is no equivalent result for algebras, the three-element chain is the congruence
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lattice of a modular lattice, but not the congruence lattice of any finite modular
lattice.

Assume that V and W are varieties of algebras. Let P be a finite lattice of
order-dimension d. Assume we find A a P-indexed diagram of finite algebras in V,
such that Con, oA has no lifting in W. Then it is likely that Con, oA has no partial
lifting (with maybe some additional locally finite properties, cf. Section 7) in the
category of gamps of W, in this case crit(V; W) < N;_;. Hence we obtain the
“optimal” bound, with no assumption on 'W. However there is no (known) proof
that a diagram with no lifting has no partial lifting, but no counter-example has
been find.

The dual of a lattice L is the lattice LY with reverse order (exchange V and A).
The dual of a variety of lattices V is V4 the variety of all duals of lattices in V. Let V
and W be varieties of lattice, if V C W or V C W4, then Con.V C Con.W. The
main application of this paper is the converse, which is proved in [4, Theorem 4.5].

Theorem. Let V and W be varieties of lattices. If every simple lattice in W con-
tains a prime interval, then one of the following statements holds:

(1) crit(V;'W) < Ng.

(2) VCW.

(3) VCwd

This is optimal, as there are varieties V and ‘W of lattices such that crit(V; W) =
No. However, without gamps, we would obtain an upper bound N3 instead of Ns.

The gamps can also be used to study congruence-preserving extensions. Denote
Py, the functor that map a gamp (A*, A, 4, E) to the pregamp (A", 4, g), we also de-
note Py, the functor that map an algebra A to the pregamp (4, © 4, Con, A). Let B
be a congruence-preserving extension of an algebra A, then (A, B,©p, Con, B) is a
gamp. Similarly, let B = (Bp,gp.q | p < qin P) be a congruence-preserving exten-
sion of a diagram A= (Ap, fp.q | p < qin P), denote B, = (4, B,Op, Con, B) and
9p.q = (9p.q Cone gy ), for all p < ¢ in P, then B = (Bp,g,q | P < qin P)is a
diagram of gamps, moreover Py o B = Py, o /_f, up to the identification of Con. B
and Con, A.

The diagrams B such that Py o B ~ P, o ff, should be understood has a
generalization of congruence-preserving extensions of A

In Section 10, given n > 2, we construct a square A of finite lattices in Ms,
such that the diagram A has no congruence n-permutable, congruence-preserving
extension. A condensate construction give a lattice A € M3 of cardinal Xy with no
congruence n-permutable, congruence-preserving extension. It was already known,
as an immediate consequence of [12].

Hopefully, once again, the diagram A satisfies a stronger statement, there is
no operational diagram B of congruence n-permutable gamps of lattices such that
Pgo B P, o A Using a condensate, we obtain a lattice M3 of cardinal Ny with
no congruence n-permutable, congruence-preserving extension.

2. Basic CONCEPT

When a poset has a smallest element (resp., largest element), it is denoted by 0
(resp., 1). We denote by 2 = {0,1} the two-element lattice, or poset (i.e., partially
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ordered set), or (V,0)-semilattice, depending of the context. Given an algebra A,
we denote 04 the identity congruence of A.
Given subset P and @) of a poset R, we denote

PlQ={peP|(EcQ)r<q9}
If @ = {q}, we simply denote P | ¢ instead of P | {q}.

Let V be a variety of algebras, let x be a cardinal, we denote Fy (k) the free
algebras in V with x generators. Given an algebra A we denote Var A the variety
of algebras generated by A. If A is a lattice we also denote Var®! A the variety of
bounded lattices generated by A. We denote L the variety of lattices.

We denote the range of a function f: X — Y by mgf = {f(z) | z € X}. We
use basic set-theoretical notation, for example w is the first infinite ordinal, and
also the set of all nonnegative integers; furthermore, n = {0,1,...,n — 1} for every
nonnegative integer n. By “countable” we will always mean “at most countable”.

Let X, I be sets, we often denote & = (x;);c; an element of X’. In particu-
lar, for n < w, we denote by ¥ = (z¢,...,2,—1) an n-tuple of X. If f: Y — Z
is a function, where ¥ C X, we denote f(Z) = (f(xo),...,f(zn—1)) whenever
it is defined. Similarly, if f: Y — Z is a function, where ¥ C X", we de-
note f(Z) = f(xo,...,Tn—1) whenever it is defined. We also write f(Z,y) =
f(xos o To—1,Y0, - - Yn—1) In case T = (To,...,Tm—1) and ¥ = (Yo, -+, Yn—1),
and so on.

For example, let A and B be algebras of the same similarity type. Let ¢ be
an n-ary operation. Let f: A — B a map. The map f is compatible with £ if
fl(Z)) = L(f(Z)) for every n-tuple & of X. Let m < n < w. Let & be an n-tuple
of X, we denote by @ | m the m-tuple (zx)k<m-

If X is a set and 6 is an equivalence relation on X, we denote by X/6 the set of
all equivalence classes of §. Given x € X we denote by 2:/6 the equivalence class
of § containing x. Given an n-tuple & of X, we denote ¥/ = (z0/0,...,xn_1/0).
GivenY C X, weset Y/0 ={z/0 |z € Y}.

Let n > 2 an integer. An algebra A is congruence n-permutable if the following
equality holds:

aofoao...=foaofo... forall a,3 € Con A.

n times n times

If n = 2 we say that A is congruence-permutable instead of congruence 2-permutable.
The following statement is folklore.

Proposition 2.1. Let A be an algebra, let n > 2 an integer. The following condi-
tions are equivalent:

(1) The algebra A is congruence n-permutable.
(2) For all xg,21,...,2, € A, there are xo = Yo,Y1,---,Yn = Tn € A such that
the following containments hold:

Oy, yr+1) C \/(@A(xi,xi_l,_l) | i <n even), for all k < n odd,
Oy, yr+1) C \/(@A(xi,xi_l,_l) |i <n odd), for all k < n even.

Let n > 2. The class of all congruence n-permutable algebras of a given similarity
type is closed under directed colimits and quotients. Moreover the class of congru-
ence n-permutable algebras of a congruence-distributive variety is also closed under
finite products (the latter statement is known not to extend to arbitrary algebras).
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3. SEMILATTICES

In this section we give some well-known facts about (V,0)-semilattices. Most
notions and results will have later a generalization with pregamps and gamps.

Proposition 3.1. Let S, T be (V,0)-semilattices, let X be a set, and let f: X — S
and g: X — T be maps. Assume that for every x € X, for every positive integer
n, and for every n-tuple y of X the following implication holds:

f@) <\ fo) = g@) <\ glw). (3.1)

k<n k<n

If S is join-generated by f(X), then there exists a unique (V,0)-homomorphism
¢: S — T such that ¢(f(x)) = g(x) for each x € X.

If the converse of (3.1) also holds and g(X) also join-generates T, then ¢ is an
isomorphism.

Definition 3.2. An ideal of a (V,0)-semilattice S is a lower subset I of S such
that 0 € I and u Vv € [ for all u,v € I. We denote by Id S the lattice of ideals
of S.

Let ¢: S — T be a (V,0)-homomorphism. The 0-kernel of ¢ is kerg ¢ = {a € S|
¢(a) = 0}; it is an ideal of S. We say that ¢ separates zero if kerg ¢ = {0}.

Let P be a poset, let § = (Sp, bp.q | p < q in P) be a diagram of (V,0)-semi-
lattices. An ideal of S is a family (I,),ep such that I, is an ideal of S, and
¢p.q(Lp) C I, for all p < g in P.

Let ¢ = (¢p)pep: S — T be a natural transformation of P-indexed diagrams of
(V,0)-semilattices. The 0-kernel of q; is kerg 5: (kerg ¢p)pep, it is an ideal of S.

Lemma 3.3. Let S be a (V,0)-semilattice, let I € IdS. Put:
0r ={(z,y) € S*| Gue)(xVu=yVu)}
The relation 05 is a congruence of S.

Notation 3.4. We denote S/I the (V,0)-semilattice S/6;, where 7 is the congruence
defined in Lemma 3.3. Given a € S, we denote by a/I the equivalent class of a
for ;. The (V,0)-homomorphism ¢: S — S/I, a — a/I is the canonical projection.
Notice that kerg ¢ = I.

If I = {0}, we identify S/I and S.

Lemma 3.5. Let ¢: S — T be a (V,0)-homomorphism, and let I € IdS and
J € 1dT such that ¢(I) C J. There exists a unique map : S/I — T/J such that
Y(a/I) = ¢(a)/J for each a € S. Moreover, ¢ is a (V,0)-homomorphism.

Notation 3.6. We say that ¢ induces the (V,0)-homomorphism ¢: S/I — T/J in
Lemma 3.5.

Lemma 3.7. Let P be a poset, let S = (Sps@pq | P < qin P) be a diagram of

(V,0)-semilattices, and let I be an ideal of S. Denote by Up.q: Sp/I, — Sq/14 the
(V,0)-homomorphism induced by ¢p. q, then (Sp/IL,Ypq | p < q in P) is a diagram
of (V,0)-semilattices.

Notation 3.8. We denote S/I the diagram (S,/I,, %, | p < q in P) introduced in
Lemma, 3.7.
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Lemma 3.9. Let P be a poset, let q_S': S — T be a natural transformation of
P-indezed diagrams of (V,0)-semilattices, let I € 1dS and J € IdT such that
op(Ip) C Jp for allp € P. Denote by 1,: Sp/I, — T/ Jp the (V,0)-homomorphism
induced by ¢,. Then d—; is a natural transformation from S / I to f/ J.

Notation 3.10. We say that q_g induces 1/7: g/f—> f/f, the natural transformation
defined in Lemma 3.9.

Definition 3.11. A (V,0)-homomorphism ¢: S — T is ideal-induced if ¢ is surjec-
tive and for all z,y € S with ¢(x) = ¢(y) there exists z € S such that zVz=yVz
and ¢(z) = 0.

Let P be a poset, let S = (Sp,¢pq | p < ¢in P) and T = (Tp,0pq | p <
q in P) be P-indexed diagrams of (V,0)-semilattices. A natural transformation
7= (mp)pep: S — T is ideal-induced if 7, is ideal-induced for each p € P.

Remark 3.12. Let I be an ideal of a (V,0)-semilattice A, denote by 7: A — A/I
the canonical projection, then 7 is ideal-induced.

The next lemmas give a characterization of ideal-induced (V, 0)-homomorphisms.

Lemma 3.13. Let ¢: S — T be a (V,0)-homomorphism. The following statements
are equivalent
(1) ¢ is ideal-induced.
(2) The (V,0)-homomorphism v: S/kerog ¢ — T induced by ¢ is an isomor-
phism.

The following lemma expresses that, given a diagram S of (V, 0)-semilattices,
the colimits of quotients of S are the quotients of the colimits of S.

Lemma 3.14. Let P be a directed poset, let S = (Sp, Pp.q | p < qin P) be a P-

indexed diagram in Semy o, and let (S,¢, | p € P) = lim S be a directed colimit
cocone in Semy, o. The following statements hold:

(1) Let I be an ideal of S. Then I = Upep @p(1p) is an ideal of S. Moreover,
denote by ¢y Sp/I, — S/I the (V,0)-homomorphism induced by ¢, for
each p € P. The following is a directed colimit cocone:

(S/I,9p | p€P)=1mS/I inSem, .

(2) Let I € 1dS. Put I, = ¢, ' (I) for each p € P. Then I = (I)pep is an

ideal of S, moreover I = Upep @p(1p)-

Lemma 3.15. Let m: A— B be a surjective morphism of algebras. The (V,0)-ho-
momorphism Cone 7 is ideal-induced. Moreover, kerg(Cone 7) = (Con, A) | ker 7.

Proposition 3.16. Let S and T be (V,0)-semilattices with T finite, let ¢p: S — T be
an ideal-induced (V,0)-homomorphism, and let X C S finite. There exists a finite
(V,0)-subsemilattice S" of S such that X C S" and ¢ | S": S" — T is ideal-induced.

Proof. As ¢ is surjective and X is finite, there exists a finite (V, 0)-subsemilattice Y
of S such that X C Y and ¢(Y) = T. Given z,y € Y with ¢(x) = ¢(y) we fix
Ugy € S such that ¢(uz,y) = 0 and  V ugy = y V uz,y. Let U be the (V,0)-
subsemilattice of S generated by {ug, | ,y € Y and ¢(z) = ¢(y)}. As ¢(u) =0
for all generators, ¢(u) = 0 for each u € U.
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Let S” be the (V,0)-subsemilattice of S generated by Y UU. As S’ is finitely
generated, it is finite. As Y C 5, ¢(S’) =T'. Let a,b € S’ such that ¢(a) = ¢(b).
There exist z,y € Y and w,v € U such that ¢ = z Vu and b = y V v, thus
¢(a) = ¢(z Vu) = ¢(x) V ¢(u) = ¢(x). Similarly, (b) = ¢(y), hence ¢(z) = é(y),
moreover z,y € Y, 80 Uy € U. The element w = vV vV u,, belongs to U, hence
¢(w) = 0, moreover w € S'. From zV ugz y =y V Uy, it follows that a Vw = bV w.
Therefore, ¢ [ S’ is ideal-induced. O

4. PARTIAL ALGEBRAS

In this section we introduce a few basic properties of partial algebras. We fix a
similarity type .Z. Given ¢ € £ we denote by ar(¢) the arity of /.

Definition 4.1. A partial algebra A is a set (the universe of the partial algebra),
given with a set Dy = Defy(A) € A*®) and a map ¢4: D; — A called a partial
operation, for each £ € Z.

Let £ € % be an n-ary operation. If ¥ € Def,(A) we say that £4(Z) is de-
fined in A. We generalize this notion to terms in the usual way. For exam-
ple, given binary operations ¢; and ¢ of a partial algebra A and z,y,z € A,
(04 (2, y), 044y, 2)) is defined in A if and only if (z,y) € Defy,(A), (y,2) €
Def€1 (A)a and (E?(x,y),ﬁf‘(y, Z)) € Def€1 (A)

Given a term ¢, we denote by Def;(A) the set of all tuples & of A such that ¢(Z)
is defined in A.

We denote £(&) instead of £4(#) when there is no ambiguity. Any algebra A has
a natural structure of partial algebra with Defy(A) = A*(®) for each ¢ € .Z.

Definition 4.2. Let A, B be partial algebras. A morphism of partial algebras is a
map f: A — B such that f(Z) € Def,(B) and £(f(Z)) = f(¢(Z)), for all £ € £ and
all Z € Def(A).

The category of partial algebras, denoted by PAlg o, is the category in which the
objects are the partial algebras and the arrows are the above-mentioned morphisms
of partial algebras.

A morphism f: A — B of partial algebras is strong if (f(A))*) C Def,(B) for
each ( € .Z.

A partial algebra A is finite if its universe is finite.

Remark 4.3. A morphism f: A — B of partial algebras is an isomorphism if and
only if the following conditions are both satisfied
(1) The map f is bijective.
(2) If £(f(Z)) is defined in B then ¢(Z) is defined in A, for each operation ¢ € .
and each tuple & of A.

We remind the reader that the converse of (2) is always true.

Definition 4.4. Given a partial algebra A, a partial subalgebra B of A is a subset B
of A endowed with a structure of partial algebra such that Def,(B) C Def;(A) and
(A(F) = (B(Z) for all £ € £ and all ¥ € Defy(B). The inclusion map from A into B
is a morphism of partial algebras called the inclusion morphism.

A partial subalgebra B of A is full if whenever ¢ € . and & € B*(®) are such
that ¢4(Z) is defined and belongs to B, then /(%) is defined in B. Tt is equivalent
to the following equality:

Def(B) = {Z € Defy(A) N B*Y | (&) € B}, for each { € Z.
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A partial subalgebra B of A is strong if the inclusion map is a strong morphism,
that is, B2() C Def,(A) for each £ € .Z.
An embedding of partial algebras is a one-to-one morphism of partial algebras.

Notation 4.5. Let f: A — B be a morphism of partial algebras, let X be a partial
subalgebra of A. The set f(X) can be endowed with a natural structure of partial
algebra, by setting Def,(f(X)) = f(Def(X)) = {f(Z) | T € Defy(X)}, for each
¢ € &. Similarly, let Y be a partial subalgebra of B. The set f~1(Y) can be
endowed with a natural structure of partial algebra, by setting Def,(f~1(Y)) =
F1(Defy(Y)) ={Z € A| f(Z) € Defy(Y)}, for each £ € .

Remark. Let f: A — B and g: B — C be morphisms of partial algebras, let X a
sub-partial algebra of A, then (go f)(X) = g(f(X)) as partial algebras. Let Z be
a partial subalgebra of X, then (go f)~%(Z) = f~!(¢7'(Z)) as partial algebras.

Let f: A — B be a morphism of partial algebras, let X be a partial subalgebra
of A. Then X is a partial subalgebra of f~!(f(X)). In particular f=*(f(4)) = A
as partial algebras. Let Y be a partial subalgebra of B, then f(f~1(Y)) is a partial
subalgebra of Y.

If .# is infinite, then there are a finite partial algebra A (even with one element)
and an infinite chain of partial subalgebras of A with union A. In particular, A is
not finitely presented in the category PAlg .

A morphism f: A — B of partial algebras is strong if and only if f(A) is a strong
partial subalgebra of B.

Lemma 4.6. An embedding f: A — B of partial algebras is an isomorphism if and
only if f(A) = B as partial algebras.

Proof. Assume that f is an isomorphism, let g be its inverse. Notice that f(A) is a
partial subalgebra of B and B = f(g(B)) is a partial subalgebra of f(A), therefore
B = f(A) as partial algebras.

Conversely, assume that B = f(A) as partial algebras. Then f is surjective,
moreover f is an embedding, so f is a bijection. Let ¢ = f~! in Set. Let ¢ €
Defy(B). As B = f(A), there exists & € Defy(A) such that f(Z) = ¢, thus g(¢) =
i € Def,(4). Morcover g(((§) = g(£(/(2))) = g( (7)) = U(7) = lg(7). O
Notation 4.7. Let A be a partial algebra, let X be a subset of A. We define
inductively, for each n < w,

(X)% = X U{c]|cis a constant of £}
(X)) = (X)4 U {U@) | L€ L, T € Defy(A), Zis an ar(¢)-tuple of(X)7 }

We endow (X)7 with the induced structure of full partial subalgebra of A. If .Z
and X are both finite, then (X)7 is finite for each n < w. If A is understood, we
shall simply denote this partial algebra by (X)™.

Definition 4.8. A partial algebra A satisfies an identity t1 = to if t1(Z) = t2(Z)
for each tuple Z of A such that both ¢;(Z) and t2(Z) are defined in A. Otherwise
we say that A fails t1 = to.

Let V be a variety of algebras, a partial algebra A is a partial algebra of V if A
satisfies all identities of V.

Remark. Let A be a partial algebra, let £ € . If Defy(A) = () then A satisfies
£(Z) =y, vacuously.
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If A fails t; = to, then there exists a tuple & of A such that ¢1(Z) and t2(Z) are
both defined and ¢ (&) # ta(&).

Lemma 4.9. The category PAlg o, has all directed colimits. Moreover, given a
directed poset P, a P-indexed diagram A = (Ap, fpq | p < q in P) in PAlg, and
a directed colimit cocone:

(A, fp | p € P) =lim(Ap, fpq | p < qin P), in Set, (4.1)
the set A can be uniquely endowed with a structure of partial algebra such that:

o Defy(A) = {fp(Z) | p € P and & € Def(Ap)}, for each L € Z;
o U(fp(Z)) = fpl(Z)) for eachp € P, all ¢ € L, and all T € Defy(A).

Moreover, if A is endowed with this structure of partial algebra, the following state-
ments hold:
(1) (A fp lpe P)=1lim(Ap, fpq|p<qinP)in PAlgy.
(2) Assume that for each £ € £, each p € P, and each ar({)-tuple ¥ of A,
there exists ¢ > p such that fp, o(Z) € Defy(Aq). Then A is an algebra, that
is, Defy(A) = A for each { € L.
(3) If P has no mazimal element and fp 4 is strong for all p < q in P, then A
is an algebra.
(4) Defy(A) ={fp(Z) | p € P and & € Defy(Ay)} for each term t of £L.
(5) Let t1 = to be an identity. If A, satisfies t1 = to for all p € P, then A
satisfies t1 = to.

Proof. Put Defy(A) = {f,(Z) | p € P and & € Defy(A,)}, for each ¢ € L.

Let ¢ € .Z, let & € Def;(A). There exist p € P and ¢ € Def,(A,) such that & =
(7). We first show that f,(¢(%)) does not depend on the choice of p and ¥. Let
q € P and 7 € Def((A,) such that & = f,(2). As f,(¥) = & = fy(Z), it follows
from (4.1) that there exists r > p, ¢ such that f, () = fq.»(2). Therefore the
following equalities hold:

foll(@)) = fr(fpr (@) = fr(l(fpr (7)) = fr(l(fqr(2))) = fr(for(U(2)) = fo(£(Z)).
Hence ((fp(4)) = fp(£(7)) for all p € P and all ¥ € Def;(A,) uniquely define a
partial operation £: Def;(A) — A. Moreover f, is a morphism of partial algebras
for each p € P.

Let (B,gp | p € P) be a cocone over (Ap, fpq | p < ¢gin P) in PAlg,. In
particular, it is a cocone in Set, so there exists a unique map h: A — B such that
ho f, = gp for each p € P. Let £ € £, let ¥ € Defy(A). There exist p € P
and ¢ € Def((Ap) such that & = f,(¥), thus h(Z) = h(fp(¥)) = gp(¥). As gp is a
morphism of partial algebras and § € Def;(A,), we obtain that h(Z) € Defy(B).
Moreover the following equalities hold:

U(h(@)) = Ugp(7)) = gp(L() = h(fp(£(7))) = h(E(fp(¥))) = h(E(T)).
Hence h is a morphism of partial algebras. Therefore:
(A, fp lp € P)=1m(Ay, fq|p<gin P) in PAlgy.
Assume that for each ¢ € .Z, for all p € P, and for all ar(¢)-tuples & of A,, there
exists ¢ > p such that f, 4(Z) € Defy(A).
Let ¢ € &£, let & be an ar({)-tuple of A. There exist p € P and a tuple ¥

of Ay, such that & = f,(¢). Let ¢ > p such that f, ,(¢) € Defo(Ag). It follows
that & = f,(¢) = f4(fp.q(¥)) belongs to Def,;(A). Therefore A is an algebra.
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The statement (3) follows directly from (2). The statement (4) is proved by a
straightforward induction on terms, and (5) is an easy consequence of (4). O

5. PREGAMPS

A pregamp is a partial algebra endowed with a semilattice-valued “distance” (cf.
(1)-(3)) compatible with all operations of A (cf. (4)). It is a generalization of the
notion of semilattice-metric space defined in [5, Section 5-1].

Definition 5.1. Let A be a partial algebra, let S be a (V, 0)-semilattice. A S-valued
partial algebra distance on A is a map §: A?> — S such that:

(1) 4(z,y) =0 if and only if x = y, for all z,y € A.

(2) 6(x,y) = d(y,x), for all z,y € A.

(3) 0(x,y) <6(x,2) Vi(z,y), for all z,y,z € A.

(4) 0(6(Z), 6(Y)) < Vycar(e) @k, yr), for all £ € 2 and all Z,§ € Def,(A).

Then we say that A = (A,6,5) is a pregamp. We shall generally write 64 =
and A=S.
The pregamp is distance-generated if it satisfies the following additional property:
(5) S is join-generated by d4(A?). That is, for all @ € S there are n > 0 and
n-tuples &, % of A such that o =\/, _, da(xk,yr).

Example 5.2. Let A be an algebra. We remind the reader that © 4(x,y) denotes
the smallest congruence that identifies x and y, for all =,y € A. This defines a
distance ©4: A? — Con. A. Moreover, (4,04, Con, A) is a distance-generated
pregamp.

A straightforward induction argument on the length of the term ¢ yields the
following lemma.

Lemma 5.3. Let A be a pregamp, let t be an n-ary term, and let ¥,y € Def(A).
The following inequality holds:

Sa(t(@), 1) < \/ dal@r,yr)-

k<n

We say that a4 and t are compatible.

Definition 5.4. Let A and B be pregamps. A morphism from A to B is an

ordered pair f = (f, f) such that f: A — B is a morphism of partial algebras,
f: A — Bis a (V,0)-homomorphism, and dg(f(z), f(y)) = f(da(z,y)) for all
z,y € A

Given morphisms f: A — B and g: B — C of pregamps, the pair go f =
(go f,go f)is a morphism from A to C.

We denote by PGamp o, the category of pregamps with the morphisms defined
above.

We denote by P, the functor from the category of .Z-algebras to PGamp o
that maps an algebra A to (A,04,Con. A), and a morphism of algebras f to
(f,Cone f). We denote by Cp the functor from PGamp o, to Semy o that maps
a pregamp A to A, and maps a morphism of pregamps f: A — B to the (V,0)-
homomorphism f
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Remark 5.5. A morphism f: A — B of pregamps is an isomorphism if and only if f
is an isomorphism of partial algebras and f is an isomorphism of (V, 0)-semilattices.
Notice that Cp,g 0 Pys = Cone.

We leave to the reader the straightforward proof of the following lemma.

Lemma 5.6. The category PGamp o iias all directed colimits. Moreover, given a
directed poset P, a P-indered diagram A = (Ap, f,, | p < q in P) in PGamp o,
a directed colimit cocone (A, fp |~p~e P) = lim(4,, fpq |~p § q in P) in PAlg ,
and a directed colimit cocone (A, f, | p € P) = lim(Ap, fpq | p < g in P) in
Sem, o, there exists a unique A-valued partial algebra distance a4 on A such that
dalfp(z), frly)) = ﬁ(dAp(x,y)) forallp € P and all z,y € Ap,.

Furthermore A = (A,0a,A) is a pregamp, f,: A, — A is a morphism of
pregamps for each p € P, and the following is a directed colimit cocone:

(A, f,lpeP)=1m(A, f,, |p<qginP), inPGampy.
Moreover if A, is distance-generated for each p € P, then A is distance-generated.

Remark 5.7. As an immediate application of Lemma 5.6, and the fact that Con,
preserves directed colimits, we obtain that both Cp, and P, preserve directed
colimits.

Definition 5.8. An embedding f: B — A of pregamps is a morphism of pregamps
such that f and f are both one-to-one.

A sub-pregamp of a pregamp A is a pregamp B such that B is a partial subal-
gebra of A, Bisa (V, 0)-subsemilattice of A, and 0 = 64 | B2

If f: B — A and f: B — A denote the inclusion maps, the morphism of
pregamps f = (f, f) is called the canonical embedding.

Notation 5.9. Let f: B — A be a morphism of pregamps. Given a sub-pregamp C'
of B, the triple £(C) = (f(C),8a | (f(C))2, f(C)) (see Notation 4.5) is a sub-
pregamp of A.

For a sub-pregamp C of A, the triple £ ~3(C) = (f~1(C),d[(f~1(C))%, f~1(C))
is a sub-pregamp of B.

We leave to the reader the straightforward proof of the following description of
sub-pregamps and embeddings.

Proposition 5.10. The following statements hold.

(1) Let A be a pregamp, let B be a partial subalgebra of A, let B be a (V,0)-
subsemilattice of A that contains 5a(B?). Put 0 = 6a | B>, Then
(B,(SB,E) is a sub-pregamp of A. Moreover, all sub-pregamps of A are
of this form.

(2) Let f: B — A be a morphism of pregamps. Then f is an embedding of
partial algebras if and only fo separates 0. Moreover f is an embedding if

and only if f is an embedding.
(3) Let f: B — A be an embedding of pregamps. The restriction f: B — f(B)
is an isomorphism of pregamps.

The following result appears in [9, Theorem 10.4]. It gives a description of finitely
generated congruences of a general algebra.
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Lemma 5.11. Let B be an algebra, let m be a positive integer, let x,y € B, and
let Z,ij be m-tuples of B. Then Op(x,y) < V/,_,, OB(xi,y:) if and only if there are
a positive integer n, a list Z' of parameters from B, and terms tg, ..., t, such that

Tr = t()(f, gv _’)a
y:tn(jvgvg)a
(4,2, 2) = tj41 (2,9, 2)  (for all j <n).

The following lemma shows that the obvious direction of Lemma 5.11 holds for
pregamps.

Lemma 5.12. Let B be a pregamp, let m be a positive integer, let x,y € B, and
let Z,y be m-tuples of B. Assume that there are a positive integer n, a list Z of
parameters from B, and terms tg, ..., t, such that the following equalities hold and
all evaluations are defined

Y
t](g7fvz) :thrl(fayvz)a (fOT' allj < ’fL)
Then 0B(x,y) < Ve 0B(Ti,Yi).
Proof. As g is compatible with terms (cf. Lemma 5.3), and dp(u, u) = 0 for each

u € B, the following inequality holds:

Sp(t;(Z.9,2),t;(7.%,2) < \/ 0p(wr.yr), forall j<n.
k<n
Hence:
5B(x7y) < \/ 5B(tj(fa 27’ 3)7t](ga fa 3)) < \/ 5B(xk;yk)~ g

j<n k<n

The following definition expresses that whenever two elements of A are iden-
tified by a “congruence” of A, then there is a “good reason” for this in B (cf.
Lemma 5.11).

Definition 5.13. A morphism f: A — B of pregamps is congruence-tractable if

for all m < w and for all z,y, zo, Yo, .-, Tm—1,Ym—1 in A such that:
op(z,y) < \/ dB(zr, yn),
k<m

there are a positive integer n, a list Z’ of parameters from B, and terms tg, ...,
t,, such that the following equations are satisfied in B (in particular, all the corre-
sponding terms are defined).

f(x) = to(f(D), F(9), 2),
fy) =ta(f(Z), F(), 2),
ti(f(7), [(Z),2) =t (f(2), f(7),Z) (for all j <n).
Lemma 5.14. Let P be directed poset and let A = (Ap, fpqg P < qinP) bea

direct system of pregamps. Assume that for each p € P there exists ¢ > p in P such
that f, , is congruence-tractable. Let:

(A, f, |p€P):1iL>n(Ap,fp’q |p<qinP), inPGamp.,.
If A is an algebra then the following statements hold:
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(1) Letz,y € A, let m < w, let x0,Yo, .-, Tm—1,Ym—1 1 A. The following two
inequalities are equivalent:

da(z,y) < \/ da(xr, yr), (5.1)
k<m

Oa(z,y) < \/ Oalzr,yr). (5.2)
k<m

(2) There exists a unique (V,0)-homomorphism ¢: Cone A — A such that:
o(Oa(z,y)) =dalz,y), foralzyec A

Moreover ¢ is an embedding.
(3) If A is distance-generated, then the (V,0)-homomorphism ¢ above is an
isomorphism.

Proof. Lemma 5.6 and Lemma 4.9 imply that the following are directed colimits
cocones

(A, fp |p€ P)=1m(Ap, fpq |[p<qin P), inPAlgy. (5.3)
(A, fp | p€ P)=lm(Ap, fpq|p<gin P), in Set. (5.4)
(A fp|p€P)=1lim(A,, frg|p<qinP), inSemyg. (5.5)

(1) Let x,y € A, let m < w, and let Z, ¢ be m-tuples of A.

Assume that (5.1) holds. It follows from (5.4) that there are p € P, o'y’ € A,
and m-tuples &',y of A,, such that x = f,(2'), y = f,(v/), & = fp(&), and ¥ =
fo(¥"). The inequality (5.1) can be written

Sa(fola) fo(y) <\ dalfo(al), fo(ui).
k<m
This implies:
f; (5Ap (x/ayl)) < fp < \/ 5Ap (x;cay;c)> .
k<m

Hence, it follows from (5.5) that there exists ¢ > p with:

J};,q (6Ap (xlay/)) < ﬁ,q < \/ oa, (xﬁmyb> 5

k<m

so, changing p to ¢, @’ to fpq(2'), ¥’ to fpq(¥), T to fp.q(&), and ¥ to f, 4(¥),
we can assume that:
5Ap(x/,yl) < \/ 5Ap($;€,y;€)
k<m
Let ¢ > p in P such that f,, is congruence-tractable. There are a positive

integer n, a list Z of parameters from Ay, and terms %y, ..., ¢, such that the
following equations are satisfied in A,:

foa(@") = to(fp,q(& ), 2),

fo.aW') = ta(fp,a(@); fp.a(T), 2),

 fra(T
th(fp.a(@): Fo.a(@), 2) = th1 (fp.g(F), fo.a(§7), 2),  (for all k <n).
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Hence, applying f,, we obtain

Tr = to(f, 377 fq(z))v
Yy = tn(fa 377 fq(g))
tk(g7 fa fq(’g)) = thrl(f’ 27’ fq(g))7 (fOI‘ all k < ’fL)

Therefore, it follows from Lemma 5.11 that (5.2) holds.
Conversely, assume that (5.2) holds. It follows from Lemma 5.11 that there are
a positive integer n, a list Z of parameters from A, and terms tg, ..., t, such that

)

T = tO(fa 37) Z)v
Y= tn(‘fa Zj’ 2)7
tj(ga fa 2) :thrl(fvga 2)7 (fOI' aH] < n)
We conclude, using Lemma 5.12, that (5.1) holds.
As Con, A is generated by {©4(x,y) | x,y € A}, the statement (2) follows from

Proposition 3.1. Moreover if we assume that A is distance-generated, that is A is
join-generated by {da(x,y) | z,y € A}, then ¢ is an isomorphism. O

As an immediate application, we obtain that a “true” directed colimit of “good”
pregamps is an algebra together with its congruences.

Corollary 5.15. Let P be directed poset with no mazimal element and let A=
(Ap, f,q | P < qin P) be a P-indexed diagram of distance-generated pregamps.
If £, 1s congruence-tractable and fy, q is strong for all p < q in P, then there

exists a unique (V,0)-homomorphism ¢: Con. A — A such that:

d(Oa(r,y)) =da(z,y) foral z,y € A.

Moreover, ¢ is an isomorphism.

Definition 5.16. An ideal of a pregamp A is an ideal of A. Denote by Id A = Id A
the set of all ideals of A.

Let P be a poset, let A = (Ap, f,, | p < gin P) be a P-indexed diagram in
PGamp . An ideal of A is an ideal of (Zm f;,q | p < gqin P) (ct. Definition 3.2).

Definition 5.17. Let w: A — B be a morphism of pregamps. The 0-kernel of =,
denoted by kerg 7, is the 0-kernel of 7 (cf. Definition 3.2).

Let P be a poset and let @ = (7 )pep: A — B be a natural transformation of
P-indexed diagrams of pregamps. The 0-kernel of 7 is I= (kerg 7)) pep-

Remark 5.18. The 0-kernel of 7r is an ideal of A. Similarly the O-kernel of @ is an
ideal of A.

If 7: A — B is a morphism of algebras, then ker P, (7) is the set of all compact
congruences of A below ker 7, that is, kerg Pga(m) = (Cong A) | ker .

Definition 5.19. A morphism f: A — B of pregamps, is ideal-induced if f(A) =
B as partial algebras and f is ideal-induced. In that case we say that B is an
ideal-induced image of A.

Let P be a poset, let A and B be P-indexed diagrams of pregamps. A natural
transformation ]_"" = (fp)pep: A — B is ideal-induced if f, is ideal-induced for
each p € P.
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Remark 5.20. A morphism f: A — B of pregamps is ideal-induced if fis ideal-
induced, f is surjective, and for each ¢ € £ and each tuple b of B , 6(5) is defined
in B if and only if there exists a tuple @ in A such that b = f(@) and £(a@) is defined
in A.
If f: A— B is a surjective morphism of algebras, then Pg,(f) is ideal-induced.
If f: A— B and g: B — C are ideal-induced morphisms of pregamps, then
g o f is ideal-induced.

The following proposition gives a description of quotients of pregamps.

Proposition 5.21. Let A be a pregamp and let I € IdA. The binary relation
0r = {(x,y) € A% | da(z,y) € I} is an equivalence relation on A. Given a € A
denote by a/I the Or-equivalence class containing a, and set A/I = A/0;. We can
define a structure of partial algebra on A/I in the following way. Given £ € £, we
put:

Defg(A/I) = {f/[ | T e Defg(A)},
(AN(Z)T) = tA(Z) /1,  for all T € Defy(A).

Moreover 64,r: (A/1)* — AT, (x/I,y/I) — da(z,y)/I defines an A/I-valued
partial algebra distance, and the following statements hold:

(1) A/T=(A/I, 5A/I,Z/I) is a pregamp.

(2) Put 7: A — A/I, x — x/I, and denote by 7: A — A/I, d — d/I the
canonical projection. Then ™ = (mw,7) is an ideal-induced morphism of
pregamps from A to A/I.

(3) The 0-kernel of 7 is I.

(4) If A is distance-generated, then A/l is distance-generated.

Proof. The relation 0; is reflexive (it follows from Definition 5.1(1)), symmetric (see
Definition 5.1(2)) and transitive (see Definition 5.1(3)), thus it is an equivalence
relation.

Let ¢ € £, let &,§ € Defy(A) such that zy/I = yi/I for each k < ar({). Tt
follows from Definition 5.1(4) that 54 (¢4(Z), £4(3)) < Vi<arey 9a(zr,yx) € I, s0
(A(Z)/T = ¢2(j)/1. Therefore the partial operation ¢4/7: Def,(A/I) — A/I is
well defined.

Let x,2',y,y’ € A, assume that /I = 2//I and y/I = y'/I. The following
inequality holds:

da(r,y) < da(z,2’)Voal',y)Vialy'y).
However, 6 a(x,2’) and 6 a(y,y’) both belong to I, hence §a(z,y)/I < da(2’,y")/I.
Similarly 64(a’,y")/I < da(z,y)/I. So the map d4,;: (A/I)* — A/I is well de-

fined.
Let xz,y € A, the following equivalences hold:

dasr(x/ly/I) =0/1 <= da(x,y) € <= x/I =y/I.

That is, Definition 5.1(1) holds. Each of the conditions of Definition 5.1(2)-(5)
for 9 4 implies its analogue for d4,;5.

It is easy to check that 7 is well defined and that it is a morphism of pregamps.
O
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Notation 5.22. The notations A/I, A/I, and 0 4,; used in Proposition 5.21 will be
used throughout the paper. The map 7 is the canonical projection.

If T = {0}, we identify A/I and A.

If X is a partial subalgebra of A, then we denote X/I = {z/I | z € X}, with its
natural structure of partial subalgebra of A, inherited from X, with Def,(X/I) =
{Z/1| % € Defy(X)} for each £ € .¥. That is X/I = w(X) as partial algebras.

Let B be a sub-pregamp of A and let I be a common ideal of A and B. Then
we identify the quotient B/I with the corresponding sub-pregamp of A/I.

Remark. 1t is easy to construct a pregamp A, a term ¢, a tuple @ of A, and an
ideal I of A, such that ¢(Z) is not defined in A, but ¢(Z/I) is defined in A/I.

The following proposition gives a description of how morphisms of pregamps
factorize through quotients. It is related to Lemma 3.5.

Proposition 5.23. Let f: A — B be a morphism of pregamps, let I € Id A, and

let Je€ldB. If f(I) C J, then the following maps are well defined:
g: A/ — B/J
x/I— f(x)/J,

g: AJI — BJJ
a/I — f(a)/J.
Moreover, g = (g,9) is a morphism of pregamps from A/l to B/J. If w;: A —
A/I and wy: A — A/I denote the canonical projections, then the following dia-
gram commautes:

A%B

ﬂ,l lm

A/l —— BJJ
g

Proof. Observe that §: A/I — B/.J is the (V,0)-homomorphism induced by f. Let
x,y € Asuch that /I = y/I, that is, da(x,y) € I. It follows that dg(f(x), f(y)) =
f(a(z,y)) € J, so f(x)/J = f(y)/J. Therefore the map g is well defined.

Let £ € &£, let d € Def;(A/I), and let & € Def;(A) such that @ = Z/I. The

following equalities hold:

gU(Z/1)) = g(U(D)/T) = fUE(D)/ T = L(f(D)/] = L(f(£)/]) = L(g(Z/T)).
Thus g(¢(d@)) = £(g(d)). Therefore g is a morphism of partial algebras.
Let z,y € A. Tt is easy to check g(da/r(z/1,y/I)) = dB/s(9(x/J),9(y/J)).
Therefore g: A/I — B/J is a morphism of pregamps. Moreover wjo f = gom;
is obvious. (]

Notation 5.24. We say that f induces g: A/I — B/.J, the morphism of Proposi-
tion 5.23.

Let P be a poset, let A = (Ap, f, 4 | p < qin P) be a P-indexed diagram in
PGamp o, let I = (Ip)pep be an ideal of A, and let 9pqt Ap/lp — Ay/l, the
morphism induced by f, _, for all p < ¢ in P. We denote by A/I = (Ap/Ip. gy, |
p<gqin P).

p,q’
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The diagram A/fis a quotient of A.

Remark 5.25. It is easy to check that A/f is indeed a diagram. Given p < ¢ <r
in P and x € A, the following equalities hold:

ng(gpﬂl(x/lp)) = gq,r(fpﬂ(x)/lq) = fq,r(fp,q(x))/f = fpm(x)/lr = gpw(x/jp)-

Proposition 5.23 can be easily extended to diagrams in the following way. It is
also related to Lemma 3.7.

Proposition 5.26. Let P be a poset, let A = (Ap,f,q P < qinP) and B =
(Bp: 9,4 | p < qin P) be P-indeved diagrams in PGamp . Let I be an ideal of A,
let J be an ideal of B. Let E = (&,)pepr: A — B be a natural transformation such
that &,(1,) € J, for each p € P. Denote by x,: Ap/I, — B,/J, the morphism
induced by &,, for each p € P. Then X = (x,)pep is a natural transformation from
A/T to B/J.
Notation 5.27. With the notation of Proposition 5.26. We say that x: A/I — B/.J
is induced by E

The following lemma expresses that ideal-induced images of pregamps corre-
spond, up to isomorphism, to quotients of pregamps. It is related to Lemma 3.13.

Lemma 5.28. Let f: A — B be a morphism of pregamps. The following state-
ments are equivalent:

(1) f is ideal-induced.

(2) f induces an isomorphism g: A/kerg f — B.

Proof. Denote w: A — A/kerg f the canonical projection, so gomw = f.

Assume that f is ideal-induced. As f: A — Bis ideal-induced, Lemma 3.13
implies that f induces an isomorphism g: E/ kerg f — B. Tt follows that g sepa-
rates 0, thus (cf. Proposition 5.10(2)) g is an embedding. Moreover g(A/ kerg f) =
g(m(A)) = f(A) = B as partial algebras. Therefore it follows from Lemma 4.6 that
¢ is an isomorphism of partial algebras, thus g is an isomorphism of pregamps (cf.
Remark 5.5).

Assume that g is an isomorphism. It follows that g is an isomorphism, so
Lemma 3.13 implies that f is ideal-induced. Moreover ¢ is an isomorphism, thus
f(A) = g(w(A)) = g(A/kerg f) = B as partial algebras. Therefore f is ideal-
induced. (]

The following proposition expresses that a quotient of a quotient is a quotient. It
follows from Lemma 5.28, together with the fact that a composition of ideal-induced
morphisms of pregamps is ideal-induced.

Proposition 5.29. Let A be a pregamp, let I be an ideal of A, let J be an ideal
of A/I. Then (A/I)/J is isomorphic to a quotient of A.

The following results expresses that, up to isomorphism, quotients of sub-pregamps
are sub-pregamps of quotients.

Proposition 5.30. Let A be a pregamp, let B be a sub-pregamp of A, and let
I € Id B. Then there exist J € Id A, a sub-pregamp C of A/J, and an isomorphism
f:B/I—C.

Let A be a pregamp, let I € Id A, and let B be a sub-pregamp of A/I. There
exists a sub-pregamp C of A such that B is isomorphic to some quotient of C'.
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Proof. Let A be a pregamp, let B be a sub-pregamp of A, let I € Id B. Put
J=A L 1. As I is an ideal of B it is directed, therefore J is an ideal of A.

Let f: B — A be the canonical embedding. Notice that f( ) C J; denote by
g: B/I — A/J the morphism induced by f (cf. Proposition 5.23).

Let d,d’ € B such that g(d/I) = g(d'/I), that is, d/J = d’/J, so there exists
w € Jsuch that dVu=d Vu. AsJ= ALI, there exists v € I such that u < v,
hence d Vv =d Vw, that is, d/I = d’'/I. Therefore g is an embedding. It follows
from Proposition 5.10 that g = (g,¢) is an embedding and induces an isomorphism
B/I — g(B/I); the latter is a sub-pregamp of A/J.

Now let I € Id A and let B be a sub-pregamp of A/I. Denote by w: A — A/I
the canonical projection, put C = w~!(B) (cf. Notation 5.9). As 7 is ideal-
induced, it is easy to check that w(C) = B, and the restriction w | C — B is
ideal-induced. O

The following lemma, in conjunction with Lemma 3.14, proves that, given a

direct system A of pregamps, every quotient of the colimit of A is the colimit of a
quotient of A.
Lemma 5.31. Let P be directed poset and let A = (Ap, fpq | P < qin P) be a
P-indexed diagram in PGamp . Let (A, f, |p € P)=lm(A,, f, [p<qinP)
be a directed colimit cocone in PGamp . Let I = (Ip)pep be an ideal of A.
Then I =,ep fo(Ip) is an ideal of A.

Let g,: Ay/I, — A/I be the morphism induced by f,, let g, ,: Ap/I, — Aq/l,
be the morphism induced by f, ., for all p < q in P. The following is a directed
colimit cocone:

(A/I,g,|pe€P)=1lm(Ap/I), f,,|p<gqinP)in PGampg.

Proof. Lemma 4.9 and Lemma 5.6 imply that the following are colimits cocones:

(A, fp | p € P)=1im(Ap, fpq|p <gin P)in Set, (5.6)
(A, fp |pe P)= h_n)1(gp, f;q |p <g¢in P)in Semy g (5.7)
(A fp | p € P)=lim(A, fpq |p<qin P) in PAlgy (5.8)

Moreover, Lemma 3.14 implies that I is an ideal of A and that the following is

a directed colimit cocone:
(A/1,3, gp | p € P) = lim( p/Ip,gp,q |p <gqin P)in Semy g (5.9)
Let p € P, let x,y € A, such that g,(z/I,) = gp(y/I,). It follows that
fo(x)/T = fp(y)/I, that is, 6 a(fp(x), fp(y)) € I. So there exist ¢ € P and a € Z
such that fp((SAp (x,y)) =da(fp(x), fr(y)) = fq( ). Tt follows from (5.7) that there
exists 7 > p,q such that 04, (fp.r(2), fpr(y)) = fpﬁr((SAp (z,y)) = fq, (a). However,

f{m( ) € fq (1, ) C I, so fp, () /1 = fp,r(y)/fm and so gp,r(x/lp) = gp,f’(y/lp)-
Moreover A/I = U,cp fo(Ap)/1 = U,cp 9p(Ap/1p). Hence the following is a di-
rected colimit cocone:

(A/1,g9p | p € P) =1lim(Ap/Iy, gpq | p < g in P) in Set.
Let ¢ € .Z. The following equalities hold:

Def(A/I) = Defy(A)/1 = ] fo(Defe(4p))/1 = | gp(Dete(Ap/1,)).

pEP peP
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, let @ € Defy(A,/I). Then, as g, is a morphism of partial algebras,
¢(gp(d)). So, by Lemma 4.9, the following is a directed colimit cocone:

(A/1,gp | p € P) :h_r>n(Ap/Ip’gp,q |p<qin P)in PAlg,.

As f, is a morphism of pregamps, d4,7(9p(7), 9(y)) = Gp(0a,/1,(z,y)) for all
p€ Pandall z,y € A,/I,, thus Lemma 5.6 implies that the following is a directed
colimit cocone:

Definition 5.32. A pregamp A satisfies an identity ¢; = to if A/I satisfies t; = to
for each I € 1d A.

Let V be a variety of algebras. A pregamp A is a pregamp of V if it satisfies all
identities of V.

Remark. It is not hard to construct a pregamp A, an identity {; = t2, and an
ideal I of A such that A satisfies t; = to, but A/I fails t1 = to.

A pregamp A satisfies an identity ¢; = 2 if and only if for each ideal-induced
morphism f: A — B of pregamps, the partial algebra B satisfies t; = 5.

Definition 5.33. Let V be a variety of algebras. The category of pregamps of 'V,
denoted by PGamp(V), is the full subcategory of PGamp o, in which the objects
are all the pregamps of V.

As an immediate application of Lemma 5.31 and Lemma 3.14, we obtain that the
class of all pregamps that satisfy a given identity is closed under directed colimits.

Corollary 5.34. Let V be a variety of algebras and let P be a directed poset.
Let A = (Ap, fpq | P < qin P) be a P-indexed diagram in PGamp(V). Let
(A, f, | p € P) = lm(Ay, f,, | p < qinP) be a directed colimit cocone in
PGamp . Then A is a pregamp of V.

Similarly, it follows from Proposition 5.29 and Proposition 5.30 that the class of
all pregamps that satisfy a given identity is closed under ideal-induced images and
sub-pregamps.

Corollary 5.35. Let A be a pregamp of a variety V, let B be a pregamp, let
f: A — B be an ideal-induced morphism of pregamps, then B is a pregamp of V.
Furthermore, every sub-pregamp of A is a pregamp of V.

6. GAMPS

A gamp of a variety V is a pregamp that “belongs” to V (cf. (1)), together with a
partial subalgebra (cf. (2)). The main interest of this new notion is to express later
some additional properties that reflect properties of algebras (cf. Definition 6.3).
It is a generalization of the notion of a semilattice-metric cover as defined in [5,
Section 5-1].

Definition 6.1. Let V be a variety of Z-algebras. A gamp (resp., a gamp of V) is

a quadruple A = (A%, A, a, g) such that

(1) (A,d4,A)isapregamp (resp., a pregamp of V) (cf. Definitions 5.1 and 5.32).
(2) A* is a partial subalgebra of A.



CRITICAL POINTS 21

A realization of A is an ordered pair (A4’, x) such that A’ € V, A is a partial sub-
algebra of A’, xy: A — Cone A’ is a (V,0)-embedding, and x(54(z,y)) = © 4/ (z,y)
for all x,y € A. A realization is isomorphic if x is an isomorphism.

A gamp A is finite if both A and A are finite.

Let A and B be gamps. A morphism f: (A,(SA,A) — (B,(SB,E) of pregamps
is a morphism of gamps from A to B if f(A*) is a partial subalgebra of B*.

The category of gamps of V, denoted by Gamp(V), is the category in which the
objects are the gamps of V and the arrows are the morphisms of gamps.

A subgamp of a gamp A is a gamp B = (B*, B, g, E) such that B* is a partial
subalgebra of A*, B is a partial subalgebra of A, g = d4 | B2, and Bisa (V,0)-
subsemilattice ofNE. Let f: B — A and f: B — A be the inclusion maps. The

ordered pair (f,f) is a morphism of gamps from B to A, called the canonical
embedding.

Remark. A gamp might have no realization. A realization of a finite gamp does
not need to be finite.

Let f: A — B be a morphism of gamps, let (A’, x) be a realization of A, and
let (B, &) be a realization of B. There might not exist any morphism g: A’ — B’.

Definition 6.2. A gamp of lattices is a gamp of the variety of all lattices.

Let B be a gamp of lattices. A chain of B is a sequence xg, x1,...,T,_1 of B*
such that x; Ax; = 2; in B for all ¢ < j < n. We sometime denote such a chain
as xg < w1 < --- < wpoq. If @y # o for all i < j < n, we denote the chain as
To <2 <+ < Tp_1.

Let u < v be a chain of B, we say that v is a cover of u, and then we write
u < v, if there is no chain u < z < v in B.

The following properties for a gamp come from algebra. It follows from Def-
inition 6.3(1) that there are many operations defined in A. With (2) or (3) all
“congruences” have a set of “generators”. Condition (4) expresses that whenever
two elements are identified by a “congruence” of A*, then there is a “good reason”
for this in A (cf. Lemma 5.11). Conditions (6) and (7) are related to the transitive
closure of relations. Condition (8) is related to congruence n-permutability (cf.
Proposition 2.1).

Definition 6.3. A gamp A is strong if the following holds:
(1) A* is a strong partial subalgebra of A (cf. Definition 4.4).
A gamp A is distance-generated if it satisfies the following condition:

(2) Every element of A is a finite join of elements of the form d4(z,y) where
x,y € A%,

A gamp A of lattices is distance-generated with chains if

(3) For all o € A there are a positive integer n, and chains z¢ < yo,z; <
Y1, Tn1 < Yn—1 of A such that a« =\/, _ da(zr, yx)-

A gamp A is congruence-tractable (cf. Lemma 5.11) if

(4) For all LY, Z05Y05 -+ 5 Tm—1,Ym—1 in A*y if 5A($,y) < \/k<m 5A($k,yk)
then there are a positive integer n, a list z’ of parameters from A, and
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terms tg, ..., t, such that the following equations are satisfied in A.
z = to(7,9, 2),
y=tn(2,7,2),
(7,7, 2) = tiy1 (2,9, 2)  (for all & < n).
A morphism f: A — B of gamps is strong if
(5) f(A) is a strong partial subalgebra of B* (cf. Definition 4.4).
A morphism f: A — B of gamps is congruence-cuttable if

(6) f(A) is a partial sublattice of B* and given a finite subset X of B and z,y €
A with da(f(x), f(y)) < VX, there are n < w and f(z) = xo,..., Ty, =
f(y) in B* such that 64 (zx, 2p41) € B | X for all k < n.
A morphism f: A — B of gamps of the variety of all lattices is congruence-
cuttable with chains if
(7) f(A) is a partial sublattice of B* and given a finite subset X of B and
x,y € A with da(f(z), f(y)) <V X, there is a chain zp < --- < z,, of B
such that zg = f(z) A f(y), 2n = f(z) V f(y), and 64 (2, 2k41) € B | X
for all k& < n.
Let n > 1 be an integer. A gamp A is congruence n-permutable if the following
statement holds:

(8) For all zg,x1,...,2, € A*, there are o = yo,¥1,...,Yn = T in A such
that:
oAk, Ykt1) < V(éA(xi,le) | i < n even), for all £ < n odd,
AWk, Ykt1) < V(éA(xi,le) | i < n odd), for all k£ < n even.

The following lemma shows that chains in strong gamps of lattices behave the
same way as chains in lattices.

Lemma 6.4. Let xg < -+ < m, a chain of a strong gamp of lattices B. The
equalities x; Nxj = x5 Ny = x; and x; V xj = x5 V x; = x; hold in B for all
1< j<n.

Moreover the following statements hold:

dg(xp,zp) <dp(xi,z;), foralli<k<k <j<n. (6.1)
0B(zs, z;) = \/ 0B (g, Tpt1), foralli<j<n. (6.2)
i<k<j

Proof. Let i <j <n. As x;,x; € B*, all the elements x; Az, £ A x;, x; V x;, and
x; V x; are defined in B.

As u ANv=v Awuis an identity of lattices, it follows that z; A x; = z; A zj; = ;.

Aszj Ny =, (x; ANzj) Ve, =z, Ver;in B, and (uAv) Vo =0vis an identity
of lattices, z; V x; = (z; Az;) Vx; = z;. Similarly z; V z; = z;.

Let i <k <k'<j<n AsaxpAzp =) and x; A\ x) = T)r, we obtain from
Definition 5.1(4) the inequality:

5B($k7$k’) = 5B($k AN, oy N\ a:kf) < 5B($k7$j)-

Similarly, as x = 2, V 2; and z; = x; V x;, the inequality 0 (zk, z;) < 0B (zi, x;)
holds. Therefore (6.1) holds.
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Let ¢ < j < n. Definition 5.1(3) implies the inequality:

Sp(ri ;) < \/ OB(wr zri).
i<k<j

Moreover (6.1) implies dg (g, Tp+1) < 0B(zi,x;) for all i« < k < j, it follows
that (6.2) is true. O

The following proposition gives a description of quotient of gamps.

Proposition 6.5. Let A be a gamp of V and let I be an ideal ofg. Let (A, 04, Z)/I =
(A/1,04/1,A/I) be the quotient pregamp and set A*/I = {a/I | a € A*} (cf. No-
tation 5.22). The following statements hold:

(1) A/I = (A*/I,A/I,(SA/I,X/I) is a gamp of V.

(2) The canonical projection : (A,64,A) — (A/I,(SA/I,E/I) of pregamps is
a morphism of gamps from A to A/I.

(3) If (A, x) is a realization of A in 'V, then (A'/\ x(I),x’) is a realization
of A/T in V, where

X't A/I — Con(A'/\/ x(I))
/T x(d)/\/ x(D).

Moreover, if (A’, x) is an isomorphic realization of A, then (A'/\/ x(I),x")
is an isomorphic realization of A/I.
(4) If A is strong, then A/I is strong.
(5) If A is distance-generated (resp., distance-generated with chains) then A/I
is distance-generated (resp., distance-generated with chains).
(6) If A is distance-generated and congruence-tractable, then A/I is congruence-
tractable.
(7) Let n > 2 an integer. If A is congruence n-permutable then A/I is con-
gruence n-permutable.
(8) If A is a gamp of lattices and g < x1 < --- < &, is a chain of A, then
2o/l </ <- - <ux,/I is a chain of A/I.
Proof. The statement (1) follows from Corollary 5.35. Denote by 7: (A, 64, A) —
(A/I, 641, A/I) the canonical projection of pregamps. The fact that w(A*) = A* /I
as partial algebras follows from the definition of A*/I. Thus (3) holds.

Let (A’, x) be a realization of A in V, let d,d’ € A such that d/I = d’/I. Hence
there exists u € I such that dVu = d' V u, it follows that x(d)/x(u) = x(d")/x(u),
hence x(d)/V x(I) = x(d")/V x(I). Therefore the map x’ is well defined. It is
easy to check that x’ is a (V,0)-homomorphism. Assume that x'(d/I) < x'(d'/I)
for some d,d’ € A. Hence x(d)/\/ x(I) < x(d')/\/ x(I), so x(d) < x(d’) v \/ x(1).
However, x(d) is a compact congruence of A’, so there exist v € I such that
x(d) < x(d) V x(u) = x(d' Vu), as x is an embedding, it follows that d < d' V u,
so d/I < d'/I. Therefore x’ is an embedding.
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Let x,y € A. The following equivalences hold:
2/l =y/l <= da(x,y) €Il

= x(balz,y) < \/ x()
= Ou(z,y) < \/x(I)
=/ \/x()=y/\/x(])

So we can identify A/I with the corresponding subset of A’/\/ x(I). Moreover,
given @ € Defy(A/I), there exists & € Defy(A) such that @ = #/I, hence ((d) =
0(Z)/1 is identified with £(Z)/\/ x(I) = £(Z/\/ x(I)). So this identification pre-
serves the operations.

Now assume that the realization is isomorphic. Then y is surjective, thus y’ is
surjective, and thus bijective, hence the realization (A’/\/ x(I), x’) is isomorphic.
Therefore (3) holds.

The proofs of the statements (4), (5), (7), and (8) are straightforward.

Assume that A is distance-generated and congruence-tractable. Let z,y € A*,
let m < w, let &, be m-tuples of A*. Assume that:

Sasr(x/Ty/T) < \/ dasr(zn/I,ye/T).
k<m
It follows that there exists u € I with:
doalz,y) <uV \/ 0a(xr, yk)-
k<m
However, as A is distance-generated, there exist x(,..., o, 1,9, ..., ¥y,_; in A*
such that u = \/, _ da(z),y;). Asda(z),y,) <u€l, zi /I =y, /I for all k <p.
Moreover the following inequality holds:
Sa(z,y) < \/ dalzr,yn) vV \/ dalat, up)-
k<m k<p

As A is congruence-tractable, there are a positive integer n, a list 2 of parameters
from A, and terms tg, ..., t, such that, the following equations are satisfied in A:

);
),

Z
¥,Z) (for all k < n).

N1

z =t(2,7,7,
y:tn(frf 27
tk(gazj’va f/vz) = thrl(f f

Put t)(a,b, ¢ d) = t(a,d,b,d,c), for all tuples @,b,&d and all k < n. As & /I =
7' /I the following equations are satisfied in A/I:

x/I =to(Z/1,9/1,Z/1,7 /1),
y/I=t,(Z/1,§/1,2/1,% /1),
()1, 3/1,2/1,& | T) = thy, (F/1,5/1,7/1,7 /T) (for all k < n).

Therefore A/I is congruence-tractable. O

7,
7,
Y,

Definition 6.6. The gamp A/I described in Proposition 6.5 is a quotient of A,
the morphism 7 is the canonical projection.

The following proposition describes how morphisms factorize through quotients
of gamps.
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Proposition 6.7. Let f: A — B be a morphism of gamps, let I be an ideal of g,
and let J be an ideal of B. Assume that f(I) C J and denote by

g: (A/1,64/1,A/T) — (B/J,0p,,,B/J)

the morphism of pregamps induced by f. The following statements hold.

(1) g: A/I — B/J is a morphism of gamps.

(2) If f is strong, then g is strong.

(3) If f is congruence-cuttable then g is congruence-cuttable.

(4) If A and B are gamps of lattices and f is congruence-cuttable with chains,
then g is congruence-cuttable with chains.

Proof. The equality g(A*/I) = f(A*)/J of partial algebras holds. Moreover, as
f(A*) is a partial subalgebra of B, g(A*/I) is a partial subalgebra of B/J. There-
fore (1) holds.

The statement (2) follows from the definitions of a quotient gamp (cf. Proposi-
tion 6.5) and of a strong morphism (Definition 6.3).

Assume that f is congruence-cuttable. As f(A) is a partial subalgebra of B* it
follows that g(A/I) is a partial subalgebra of B*/J. Let X be a finite subset of B,
let z,y € A such that dg,;(g9(z/1),g(y/I)) <\ X/I. If X =0, then z/I = y/I,
hence the case is immediate.

If X # (), let u € J such that dg(g(z),g(y)) <uVv\ X. Put X’ = XU{u}. There
are n < w and f(z) = o,...,2n = f(y) in B* such that ép(zy, zp11) € B | X'
for each k < n. If 0p(wx,yr) < u, then dpg/j(wx/J,yx/J) = dB(TRsy8)/J =
0/J € (B/J) | X/J. Otherwise dg(zx,yr) € B | X, thus ogyi(we/J /) =
5g(zk, yr)/J € (B/J) | X/J. Therefore (3) holds.

The proof of (4) is similar to the proof of (3). O

We introduce in the following definitions a functor G: V — Gamp(V), a functor
C': Gamp(V) — Semy o and functors Py, Py, : Gamp(V) — PGamp(V).

Definition 6.8. Let A be a member of a variety V of algebras. Then the quadruple
G(A) = (A, A,04,Conc A) is a gamp of V (we recall that © 4(x,y) denotes the
smallest congruence that identifies z and y). If f: A — B is a morphism of algebras,
then G(f) = (f, Con. f) is a morphism of gamps from G(A) to G(B). It defines a
functor from the category V to the category Gamp(V).

A gamp A is an algebra if A is isomorphic to G(B) for some B. A gamp A is
an algebra of a variety V if A is isomorphic to G(B) for some B € V.

Let A be a gamp of V, we set C(A) = A. Let f: A — B be a morphism of
gamps of V, we set C(f) = f. This defines a functor C: Gamp(V) — Semy .

Let A be a gamp of V, we set Py (A) = (A,64,A). Let f: A — B be a
morphism of gamps of V, we put Py (f) = f as a morphism of pregamps. This
defines a functor Pg,: Gamp(V) — PGamp(V).

Let A be a gamp of V, we set Pg(A) = (A%, | (A*)2,A). Let f: A — B be

a morphism of gamps of V, we denote by Pg(f) the restriction (f, f): Pg(A) —
P, (B). This defines a functor Pgi: Gamp(V) — PGamp(V).

Remark 6.9. The following assertions hold.
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(1) The following equations, between the functors introduced in Definition 5.4
and Definition 6.8, are satisfied:

C oG = Con, = Cpg 0 Py,
Py oG =Py 0G = Py,,
CpgoPg =Cpgo Py =C.

(2) If Ais a subalgebra of B, then, in general, G(A) is not a subgamp of G(B).
The different “congruences” of a subgamp can be extended in a natural way
to different “congruences” of the gamp.

(3) Let A be a gamp. If A is an algebra, then there is a unique, up to iso-
morphism, algebra B such that A = G(B). Moreover if A is a gamp in a
variety V, then B € V. Indeed A is an algebra and A = G(A).

(4) Let f: A — B be a morphism of gamps. If A and B are algebras, then
f: A — B is a morphism of algebras.

(5) Let A= (Ap, fpq | P < qin P)be adiagram of gamps. If A, is an algebra,
for all p € P, then A = (Ap, fpg | p < qin P) is a diagram of algebras,
moreover A 2~ G o A.

(6) Let B € V and let I be an ideal of Con. B. There is an isomorphism

f: G(B)/I =2 G(B/\I) satistying f(x/I) =xz/\/ I and f(a/I)=a/\ I
for each x € B and each o € Con, B.

(7) Let B be an algebra. Then B is congruence n-permutable if and only if
G(B) is congruence n-permutable (this follows immediately from Proposi-
tion 2.1).

Lemma 6.10. Let V be a variety of algebras. The category Gamp(V) has all
directed colimits. Suppose that we are given a directed poset P, a P-indexed dia-
gram A = (Ay, f,,|p<qin P)in Gamp(V), and a directed colimit cocone:

Put A* =, cp f(A}) with its natural structure of partial algebra (cf. Lemma 4.9),
then A = (A*,A,(SA,Z) is a gamp of V, f,: Ay — A is a morphism of gamps,
and the following is a directed colimit cocone:

(A, I |peP)= h_r}n(Ap, Fog |p<gqinP), in Gamp(V).

Moreover the following statements hold:

(1) If A, is distance-generated for each p € P, then A is distance-generated.

(2) If V is a variety of lattices and A, is distance-generated with chains for
each p € P, then A is distance-generated with chains.

(3) Let n be a positive integer. If A, is congruence n-permutable for each
p € P, then A is congruence n-permutable.

Proof. Tt follows from Corollary 5.34 that (A, 54, A4) is a pregamp of V. Moreover A*
is a partial subalgebra of A. Hence A = (A", A,64,A) is a gamp of V. As f(4})
is a partial subalgebra of A*, f,: A, — A is a morphism of gamps. It is easy to

check that the following is a directed colimit cocone:

(A, I |peP)= h_r}n(Ap, Fog |p<g¢in P), in Gamp(V).
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Assume that A, is distance-generated for each p € P. Let a € ,ZL then there
are p € Pand 8 € Zp such that o = f;(ﬁ). As A, is distance-generated, there are
an integer n > 0 and n-tuple Z, ¢ of Ay such that 8 =\/,_, 0a,(xx,yr). Therefore
the following equalities hold:

a=f(8)=F (\/ 6Ap<xk,yk>> =\ F0a, @i u) =\ dalfolzn), folur)-

k<n k<n k<n
Thus A is distance-generated.
The proofs of (2) and (3) are similar. O
As an immediate application we obtain the following corollary.

Corollary 6.11. The functors G, C, Pg, and Py, preserves directed colimits.

Proof. It follows from the description of directed colimits of gamps (cf. Lemma 6.10)
and pregamps (cf. Lemma 5.6) that C, Py, and Py, preserve directed colimits.
As Con, preserves directed colimits, G' also preserves directed colimits. 1

Definition 6.12. Let V be a variety of algebras, let P be a poset, and let A=
(Ap, f,q | P < qin P)in Gamp(V). An ideal of A is an ideal of C'o A. Tt consists
of a family I = (Ip)pep such that I, is an ideal of ﬁp and f;w(fp) Cl,forallp <gq
in P.
We denote by A/I = (Ap/Lp, 9,4 1P < qin P), where g, .- A,/I, — Ay/I, is
induced by f, , for all p < ¢ in P.
The diagram A/fis a quotient of A.
Remark 6.13. In the context of Definition 6.12 the following equalities hold:
(Py 0 A)/T = Py o (A/D).
(CoA)/T=Co(A/D).
Moreover, up to a natural identification (cf. Notation 5.22)
(PgyoA)/l=Pgyo(A/).
Definition 6.14. Let V be a variety of algebras, let P be a poset. A partial lifting
in Vis a diagram A = (A, f, , | p < ¢ in P) in Gamp(V) such that the following
statements hold:

(1) The gamp A, is strong, congruence-tractable, distance-generated, and has
an isomorphic realization (cf. Definitions 6.3 and 6.1), for each p € P.

(2) The morphisms f, , is strong and congruence-cuttable (cf. Definition 6.3),
for all p < ¢ in P.

The partial lifting is a lattice partial lifting if V is a variety of lattices, B, is
distance-generated with chains for each p € P, and f,  is congruence-cuttable
with chains for all p < ¢ in P.

A partial lifting Ais congruence n-permutable if A, is congruence n-permutable
for each p € P.

Let § = (Sp,0p,q) be a diagram in Semy o. A partial lifting of S is a partial
lifting of A such that Co A~ S,

Remark 6.15. If A is a partial lifting of S_", then there exists a diagram A=A
-/ — — —
such that C o A = S. Hence we can assume that Co A = S.
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The following result expresses the fact that a subdiagram or a quotient of a
partial lifting is a partial lifting.

Lemma 6.16. Let V be a variety of algebras, let P be a poset, and let A be a
partial lifting in V of a diagram S. The following statements hold:

(1) Let I be an ideal of A; then A/f is a partial lifting of §/I

(2) Let Q C P; then A | Q is a partial lifting of S | Q.

Proof. The statement (1) follows from Proposition 6.5 and Proposition 6.7. The
statement (2) is immediate. O

Lemma 6.17. Let V be a variety of algebras, let P be a directed poset with no
mazimal element, and let A = (A,, f,, | p < qin P) be a partial lifting in V.
Consider a colimit cocone:

(A, f,|peP)=1lmA in Gamp(V).

Then A is an algebra in V. Moreover, for any n > 2, if all A, are congruence
n-permutable, then the algebra corresponding to A is congruence n-permutable.

Proof. The morphism f, - (Ap,(SAp,gp) — (Aq,(SAq,gq) of pregamps is both
strong and congruence-tractable for all p < ¢ in P. It follows from the descrip-
tion of colimits in Gamp(V) (cf. Lemma 6.10 and Corollary 5.15) that A is an
algebra and there is an isomorphism ¢: Con. A — A satisfying:

P(Oa(z,y)) =0a(z,y), forallz,ye A

As A* = UpeP fp(A;) and f;, ,(Ap) € A for all p < ¢ in P, it follows that A* = A.
Therefore (ida, ¢): G(A) — A is an isomorphism of gamps.

Now assume that all A, are congruence n-permutable. It follows from Lemma 6.10
that A is congruence n-permutable. As A is an algebra, the conclusion follows from
Proposition 2.1. O

7. LOCALLY FINITE PROPERTIES

The aim of this section is to prove Lemma 7.8, which is a special version of
Buttress Lemma [5] adapted to gamps for the functor C.
We use the following generalizations of (2), (3), (4), (6), and (7) of Definition 6.3.

Definition 7.1. Fix a gamp A in a variety V, a (V,0)-semilattice S, and a (V,0)-

homomorphism ¢: A — S. The gamp A is distance-generated through ¢ if the
following statement holds:

(2') For each s € S there are n < w and n-tuple &, ¥ of A* such that:
s=\/ o(0a(@r. )
k<n
If A is a gamp of lattices, we say A is distance-generated with chains through ¢ if

(3") For each s € S there are n < w and chains zg < yo, ..., Tp_1 < Yn_1 of A
such that:
s=\/ o(0a(@r. )
k<n
The gamp A is congruence-tractable through ¢ if the following statement holds:
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(4/) Let TyY,TosY0y -+ -y Tm—1yYm—1 in A*a if ¢(5A(xa y)) S \/k<m ¢(6A (xlw yk))
then there are a positive integer n, a list z’ of parameters from A, and terms
to, - .., tn such that, the following equations are satisfied in A:

¢(5A(Z‘, to(f, _07 5))) = Oa
¢(5A(y7tn(fa _07 5))) = Oa
¢(5A(tj(g7 fa Z)athrl (fa _’7 Z))) =0 (fOI‘ anj < ’fL)

A morphism f: U — A of gamps is congruence-cuttable through ¢ if the following
statement holds:

(6") Given X C S, given z,y in U, if ¢(f(0a(x,y))) <\ X then there exist n <
wand f(x) = xo,x1,...,2, = f(y) in A* such that da(zg, k1) € S| X
for all k& < n.

A morphism f: U — A of gamps of lattices is congruence-cuttable with chains
through ¢ if the following statement holds:

(7") Given X C S, given z,y € U, if ¢(f(0a(z,y))) < VX then there are
n < w and a chain g < 1 < -+ < x, of A such that g = f(x) A f(y),
Tn = f(x)V f(y), and ¢(da(xk,xp+1)) € S | X for all k < n.

Remark 7.2. A gamp A is distance-generated through idy if and only if A is
distance-generated.

A gamp A is congruence-tractable through id 1 if and only if A is congruence-
tractable.

A morphism f: U — A of gamps is congruence-cuttable through id T if and only
if f is congruence-cuttable.

A morphism f: U — A of gamps of lattices is congruence-cuttable with chains
through id if and only if f is congruence-cuttable with chains.

Lemma 7.3. Let A be a gamp in a variety of algebras V, let ¢: A — S an ideal-
induced (V,0)-homomorphism, and put I = kerg ¢.

(1) If A is distance-generated through ¢, then A/I is distance-generated.

(2) If A is distance-generated with chains through ¢, then A/I is distance-
generated with chains.

(3) If A is congruence-tractable through ¢ then A/I is congruence-tractable.

Proof. As ¢ is ideal-induced, it induces an isomorphism &: K/ I1—S.

Assume that A is distance-generated through ¢. Let d € A/I, put s = £(d).
There are n < w and n-tuples &, 3 in A* such that s =\/, _,, #(da(zx,yr)). It fol-
lows that s = \/,_,, £0a/r(zx/1,yx/1)), s0 d =\ ., 0a/1(xx /1, yx/T). Therefore
A/I is distance-generated.

The case where A is distance-generated with chains through ¢ is similar.

Assume that A is congruence-tractable through ¢. Let x,y, zo,vo, . -+, Tm—1, Ym—1
in A* such that:

Sasi(a/Iy/T) < \/ Sasi(wr/T,yn/T).
k<m

Thus ¢(0a,1(z,9)) < Viem ¢(0a(zr,yx)). Hence there are a positive integer n, a
list 7’ of parameters from A, and terms tg, ..., t, such that the following equations
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are satisfied in A:

o0A(te (¥, 2, 2), tht1(Z,9,2))) =0 (for all k < n).
Those equations imply that the following equations are satisfied in A/I:

Z‘/I:to(f/l,]j/f,Z/I),
y/I:tn(f/I7zj/Ivz/I)a
e (G/T, 8T, 2/1) = tosr (7)1, §/1,2/1)  (for all k < n).

Therefore A/I is congruence-tractable. O
The proof of the following lemma is similar.

Lemma 7.4. Let f: U — A be a morphism of gamps, let I be an ideal of U, and
let p: A — S be an ideal-induced (V,0)-homomorphism. Put J = kerg¢. Denote
byg: U/I — A/J the morphism of gamps induced by f. The following statements
hold:
(1) If f is congruence-cuttable through ¢, then g is congruence-cuttable.
(2) Assume that f is a morphism of gamps of lattices. If f is congruence-
cuttable with chains through @, then g is congruence-cuttable with chains.

We shall now define locally finite properties for an algebra B, as properties that
are satisfied by “many” finite subgamps of G(B).

Definition 7.5. Let B be an algebra. A locally finite property for B is a prop-
erty (P) in a subgamp A of G(B) such that there exists a finite X C B satisfying
that for every finite full partial subalgebra A* of B that contains X, there ex-
ists a finite Y C B such that for every finite full partial subalgebra A of B that
contains A* UY and every finite (V,0)-subsemilattice A of Con. B that contains
Con?(B), the subgamp (A*, 4, ©p, A) of G(B) satisfies (P).

Proposition 7.6. Any finite conjunction of locally finite properties is locally finite.

Lemma 7.7. Let B be an algebra and denote by £ the similarity type of B. The
properties (1)-(8) in A are locally finite for B:
Assume that £ is finite.

(1) A is strong.
Fiz an ideal-induced (V,0)-homomorphism ¢: Cone B — S, with S finite.

(2) A is distance-generated through ¢ | A.
Fiz an ideal-induced (V,0)-homomorphism ¢: Con. B — S with S finite, and as-
sume that B is a lattice. B

(3) A is distance-generated with chains through ¢ | A.
Fiz an ideal-induced (V,0)-homomorphism ¢: Conc B — S, with S finite.

(4) A is congruence-tractable through ¢ | A.
Assume that £ is finite, fix a finite gamp U, fix a morphism f: U — G(B) of
gamps.

(5) The restriction f: U — A is strong.
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Fiz an ideal-induced (V,0)-homomorphism ¢: Con. B — S where S is finite, a
finite gamp U, and a morphism f: U — G(B) of gamps.

(6) The restriction of f: U — A is congruence-cuttable through ¢ [K.

Assume that B is a lattice. Fiz an ideal-induced (V,0)-homomorphism ¢: Con. B —
S, where S is finite. Fix a finite gamp U, fiz a morphism f: U — G(B) of gamps.

(7) The restriction of f: U — A is congruence-cuttable with chains through
ol A.

Let n > 2 be an integer. Assume that B is congruence n-permutable.
(8) A is congruence n-permutable.

Proof. (1) Put X = () and let A* be a finite full partial subalgebra of B. Put
Y = {{B(%) | £ € £ and ¥ is an ar(¢)-tuple of A*}. As A* and .Z are both finite, Y’
is also finite. Let A be a finite full partial subalgebra of B that contains A*UY", let A
be a finite (V,0)-subsemilattice of Con. B containing Con’ (B). As £(Z) € Y C A,
it is defined in A, for each ¢ € . and each ar(¢)-tuple & of A.

(2) Let s € S. As ¢ is surjective, there exists § € Con. B such that s = ¢(0).
So there exist n < w and n-tuple Z,§ of B such that s = ¢(\/, ., ©p(xk, yr)). Put
XS = {33‘0, ey Ip—15Y05 - - - ,yn_l}.

Put X = [J,cg Xs. As Sis finite and X is finite for all s € S, X is finite. Let A*
be a finite full partial subalgebra of B that contains X. Put Y = (). Let A be a
finite full partial subalgebra of B that contains A* UY. Let A be a finite (v,0)-
subsemilattice of Con, B containing Con’*(B). By construction (A*, A, ©p, A) sat-
isfies (2).

The proof that (3) is a locally finite property is similar.

(4) Put X =0, let A* be a finite full partial subalgebra of B. Denote by E the
set of all quadruples (z,y, Z,¥) such that the following statements are satisfied:

x,y € A*.

Z and i are m-tuples of A*, for some m < w.
2O, 9)) < Viep ¢(OB(2k; yk))-

(xi,yi) # (xj,y;) for all i < j < m.

Put I = kerg ¢ and let (x,y,Z,4) € E. As ¢ is ideal-induced, there exists o € T
such that ©p(z,y) < Vo, OB(Tk,yx) V a. Let &, 7 be p-tuples of B such that
a =V, O}, y;). Hence:

Op(r,y) < \/ Op(erye) v \/ On(e,ui).

k<m k<p

It follows from Lemma 5.11 that there are a positive integer n, a list 2’ of parameters

from B, and terms tg, ..., t, such that the following equalities hold in B:
x:tO(fafla _’,27,3)7 (71
y - tn(x’ f/7 _" g4’ 2)7
ti(0. 7, 2,7 ,2) =tjn (T, 7, 9,7,2), forall j<n.
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Put t;([i, b, ¢, J) = t;(d, cz 5, J: ¢) for all tuples @, 5, c, d of B of appropriate length.
The following inequalities follow from the compatibility of © 5 with terms:

OB ( (T, 9, 2,7), (2,7, 9,7, 7)) \/@Bxk,yk)—a (7.4)
k<p

@B(t;(gy fa 27 f/)atj(g737a T f/ _' \/ @B xkayk) = Q. (75)
k<p

As ¢(a) = 0, it follows from (7.4) and (7.1) that:

#(Op(z,ty(Z, 7,2, %)
Set 2/ = (Z,7'). As ¢(a) = 0, it follows from

) =
7.1)-(7

)) =0 (forall j <mn).

Let Y, .2.0) be a finite partial subalgebra of B such that both t(%,¥,2,7") and
t;(g’,x Z,1") are defined in Y, , z 7, for each j < n.

Put Y = (Ye | € € E). As Y, is finite for each e € E and F is finite, Y is finite.
Let A be a finite full partial subalgebra of B that contains Y U A*, and let Abea
finite (V,0)-subsemilattice of Con, B containing Con’ (B). It is not hard to verify
that (A*, A,Op, A) satisfies (4).

(5) As U is finite, the set X1 = (f(U))} (cf. Notation 4.7) is also finite. As U
is finite and each element of f(ﬁ) is a compact congruence of B, we can choose
a finite subset X, of B such that f(U) C ConX?(B). The set X = X; U Xy is
finite. Let A* be a finite full partial subalgebra of B containing X. Put Y = (),
let A be a full partial subalgebra of B containing Y U A*, and let A be a finite
(V, 0)-subsemilattice of Con, B containing Con’'(B). The following containments
hold:

f(U) C ConX2(B) C Con(B) C A.

Moreover (f(U))} C A*.
The proofs that (6), (7), and (8) are locally finite properties are similar. O

The following lemma is an analogue for gamps of the Buttress Lemma (cf. [5]).

Lemma 7.8. Let 'V be a variety of algebras in a finite similarity type, let P be a
lower finite poset, let (Sp)pep be a family of finite (V,0)-semilattices, let B € V,
and let (¢p)pep be a family of (V,0)-homomorphisms where ¢,: Cone B — S, is
ideal-induced for each p € P. There exists a diagram A= (A, Foa | p < gqin P)
of finite subgamps of G(B) such that the following statements hold:

(1) ¢p | ~p is ideal-induced for each p € P.

(2) A, is strong, distance-generated through ¢, [ ps and congruence-tractable

through ¢, [Ap, for each p € P.

(3) Ay is a subgamp of Ay and f, , is the canonical embedding, for all p < q
in P.

(4) f,.4 is strong and congruence-cuttable through ¢, [gq, forallp < q in P.
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If B is a lattice, then we can construct A such that fpq 18 congruence-cuttable

with chains through ¢ [Zq for allp < q in P, and B, is distance-generated with
chains through ¢, for each p € P.

If B is congruence n-permutable (where n is a positive integer), then we can
construct A such that A, is congruence n-permutable for each p € P.

Proof. Let r € P, suppose having constructed a diagram (A,, Foq |p<qg<r)of
finite subgamps of G(B) such that the following statements hold:

(1) ¢p | Ap is ideal-induced for each p < r.
(2) A, is strong, distance-generated through ¢, fgp, and congruence-tractable
through ¢, [ﬁp, for each p < r.
(3) A, is a subgamp of A, and f, , is the canonical embedding, for all p <
q<r.
(4) [, is strong and congruence-cuttable through ¢, [gq, forallp<g<r.
The following property in A a subgamp of G(B) is locally finite (see Proposi-
tion 7.6 and Lemma 7.7)
(F) Aisstrong, distance-generated through ¢, [,ZL congruence-tractable through
Oy [g, and the canonical embedding f: A, — A is strong and congruence-
cuttable through ¢, [Z, for all p < 7.

Thus there exist finite partial subalgebras A’ and A, of B such that for each A
containing Con’"(B), the gamp (Af, A,, ©p, A) satisfies (F'). Moreover it follows
from Proposition 3.16 that there exists a finite (V, 0)-subsemilattice A, of Con, B,
such that Con"(B) C A, and ¢, | A, is ideal-induced.

Set A, = (A, A,,Op, ZT), and f, . the canonical embedding for each p < r. By
construction, the diagram (A, f, , | p < g < ) satisfies the required conditions.
The construction of (A, f, , | p < g in P) follows by induction.

If B is a lattice, then we can add to the property (F') the condition f: A, — A is
congruence-cuttable with chains through ¢, [K for each p < r, and B, is distance-
generated with chains through ¢,.

If B is congruence n-permutable, then we can add to the property (F') the
condition A, is congruence n-permutable. O

Remark 7.9. In the context of Lemma 7.8, if we have a locally finite property for B,
then we can assume that any A, satisfies this property.

8. NORM-COVERINGS AND LIFTERS

The aim of this section is to construct a (family) of poset, which shall be use
later as an indexe for a diagram. We also give a combinatorial statement that is
satisfied by this poset.

We introduced the following definition in [3].

Definition 8.1. A finite subset V of a poset U is a kernel if for every u € U, there
exists a largest element v € V such that v < u. We say that U is supported if every
finite subset of U is contained in a kernel of U.

It is not hard to verify that this definition of a supported poset is equivalent to
the one used in [5].
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The following definition introduced in [3] also appears in [5] in a weaker form.
Nevertheless, in the context of No-lifters (cf. Definition 8.3), all these definitions
are equivalent.

Definition 8.2. A norm-covering of a poset P is a pair (U,d), where U is a
supported poset and 9: U — P, u — Ou is an isotone map.

We say that an ideal w of U is sharp if the set {Ou | v € u} has a largest element,
which we shall then denote by du. We shall denote by Ids U the set of all sharp
ideals of U, partially ordered by inclusion.

We remind the reader about the following definition introduced in [5].

Definition 8.3. Let P be a poset. An Rg-lifter of P is a pair (U,U), where U is a
norm-covering of P and U is a subset of Ids U satisfying the following properties:
(1) The set U~ = {w € U | du is not maximal in P} is lower finite, that is,
the set U | u is finite for each u € U™.
(2) For every map S: U™ — [U]<¥, there exists an isotone map o: P — U
such that
(a) the map o is a section of 0, that is, do(p) = p holds for each p € P;
(b) the containment S(o(p)) No(q) C o(p) holds for all p < ¢ in P. (Ob-
serve that o(p) belongs to U™.)

The existence of lifters is related to the following infinite combinatorial statement
introduced in [6].

Definition 8.4. For cardinals k, A and a poset P, let (k, <\) ~ P hold if for every
mapping F': (k) — [k]<*, there exists a one-to-one map f: P < & such that

F(f(Plp)nfPlg Cf(Plp), forallp<ginP.

Notice that in case P is lower finite, it is sufficient to verify the conclusion above
for all F': [k]<* — [k]<* isotone and all p < ¢ in P.

Lemma 8.5. The square poset has an Ro-lifter (X, X) such that card X = RN;.

Proof. By [6, Proposition 4.7], the Kuratowski index (cf. [6, Definition 4.1]) of
the square P is less than or equal to its order-dimension, which is equal to 2.
Hence, by the definition of the Kuratowski index, (T, <r) ~+ P for every infinite
cardinal k. Therefore, by [5, Corollary 3-5.8], P has an Ny-lifter (X, X) such that
card X = card X = N;. O

Given a poset P, we introduce a new poset which looks like a lexicographical
product of P with a tree. This construction mainly used in [4].

Definition 8.6. Let P be a poset with a smallest element, let X C P, let R =
(Ry)zex be a family of sets, let & < w. Consider the following poset:

T={n&7r) |n<a T€X", and 7€ Ryy X -+ X Ry, .},

ordered by (m,Z,7) < (n,y,8) if and only ift m < n, & = ¢ [ m, and ¥ = § | m.
Recall that 4 | m = (yo,.--,Ym—1). Given t = (n,Z,7) € T and m < n, we set
tIm=(m,Zm,7|m).

Put:

A=pPRza=TxP=) |J ({n} {7} x (Bay x -+ x Ru,,) x P).

neagexn
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Any element of A can be written (n,Z,7,p) with n < o, & € X™ and ¥ € R,, X
e X anfr
We define an order on A by (m, %, 7, p) < (n,¥, 8, q) if and only if the following
conditions hold:
(1) (m,Z,7) < (n,7,5).
(2) If m = n then p < gq.
(3) If m < n then p < yy,.

Remark 8.7. In the context of Definition 8.6, notice that 7" is a lower finite tree.
Indeed, if (n,Z,7) € T, then T | (n,Z,7) = {(m,Z [ m,7 [ m) | m < n} is a chain of
length n. The tree T' is called the tree associated to P Xy a.
The following statements hold:
(1) If P is lower finite, then A is lower finite.
(2) The inequality card A < Ng +card P + . card R, holds.
(3) The inequality card T < g + ZweX card R, holds.

Remark 8.8. In the context of Definition 8.6, if ¢ < b in A, then there are t =
(n,@,7) €T, p,q € P, and m < n such that a = (¢t [ m,p) and b = (¢, q). Moreover,
if m < mn, then (¢t [m,p) < (t] (m+1),0) < (t,q). It follows easily that a < b if and
only if exactly one of the following statements holds:

(1) m=mnand p <q.

(2) n=m+1, p=x,, and ¢ = 0.
As a consequence, we obtain immediately that If P, X, and all R, are finite, then
each a € A has only finitely many covers.

Lemma 8.9. Let k > X be infinite cardinals, let P be a lower finite k-small poset
with a smallest element, let X C P, let R = (Ry)zex be a family of k-small sets,

and let o < w. If (k, < X) ~ P, then (k,< \) ~ PRy a.

Proof. Denote by T the tree associated to A = PXza. It follows from Remark 8.7
together with the assumptions on cardinalities that the following inequalities hold:

cardT < Ny + Z card R, < Ng + Z k< K.
rzeX reX

Thus there exists a partition (K;)ier of k such that card K; = k for each t € T'.
Notice that A is lower finite. Let F': [k]<“ — [k]<* isotone, let t € T.. Assume
having constructed, for each s < t, a one-to-one map o5: P < K such that setting

Ss ={osim(p) | m <nand p <a,}, forall s=(n,z,7) <t,
the following containments hold:
rmgos C Ky — F(Ss), for each s <,
F(JS(Plp) U SS) Nos(P | q) Cos(P|p), for all p < g in P and all s < t.

Put F,(U) = F(UUS;) — F(S;) for each U € [K; — F(S;)]<¥. As S, is finite,
this defines a map Fy: [K; — F(S;)]<% — [K; — F(S¢)]<*. As F(S;) is A-small,
card(K; — F(St)) = &, moreover (K, <A) ~» P, so there exists a one-to-one map
oi: P — Ky — F(S) such that:

F(ou(Plp)US) Now(Plq) Cou(Plp), forallp<ginP.
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Therefore we construct, by induction on ¢, a one-to-one map o;: P — K; for each
t € T, such that setting

St =A{oim(p) |m <nand p <z}, foralt=(n,z7r) eT, (8.1)
the following containments hold:
rmgo; C Ky — F(S;), foreachteT, (8.2)
F(O’t(P lp)u St) Naoi(P | q) Co(P | p), forallp<gin Pandallte€T.
(8.3)

For (t,p) € A, set o(t,p) = o¢(p). This defines a map o: A — k. Let a = (s,p)
and b = (t,q) in A such that o(a) = o(b). It follows from (8.2) that o(a) € K,
and o(b) € Ki. As (Ky)uer is a partition of k, we obtain s = t. Moreover
oi(p) = o(a) = a(b) = 04(q), so, as oy is one-to-one, p = ¢, and so a = b. Therefore
o is one-to-one.

Let a = (t,p) € A, with t = (n,Z,7) € T. It follows from the definition of A
that:

Ala={tIm,g) € Alm<nandq€ P |x,}U{(t,q) € A|q€ P|p}.
Thus, from (8.1), we see that
o(Ala)=8Uo(P|p), foreacha=(tp)eE A (8.4)

As (Ki)ier is a partition, it follows from (8.1) and (8.2) that K; NS, = (), thus,
by (8.4),

o(Ala)NKy=o0¢(P|p), foreacha=(t,p) e A (8.5)

Let a < b in A. There are two cases to consider (cf. Remark 8.8). First assume

that a = (¢,p) and b = (¢,q) with p < g and t = (n,Z,7) € T. Let ¢ < b with

o(c) € F(o(A | a)). We can write ¢ = (¢ [ m,p’), with m < n. Suppose first that

m<n. Asc<b p < ay, thus ¢ < a. So o(c) € o(A | a). Now suppose that
m = n. It follows from (8.2) that

alc) =oi(p)) € F(o(Ala)Na(ALb)N(K;— F(Sy)).
So, from (8.4) and (8.5) we obtain
o(c) € Foy(P | p)US) Now(P | q).

Thus (8.3) implies that o(c) € o¢(P | p), from (8.4) we obtain o(c) € (A | a).
Therefore the containment F(o(A | a)) No(A]b) Co(A | a) holds.

Now assume that ¢t = (n+ 1,%,7) € T, b = (¢,0) and a = (¢t [ n,z,). Let ¢ < b
such that o(c) € F(o(A | a)). As ¢ < b there are m < n+ 1 and p € P such that
c=(tm,p). if m <n, then p <z, thus ¢ <a,soo(c) €c(Ala). Um=n+1,
then ¢ = b. From (8.1) and (8.4) we obtain o(A | a) = Sipp U ogpn(P | z) = St
Therefore 04(0) = o(c) € F(S;), in contradiction with (8.2). So the containment
F(o(Ala))No(A|b) Co(A|a) holds. O

Corollary 8.10. For an integer m > 1, put
B (<2) = {X € P(m) | either card X <2 or X =m}.

Let P be a (V,0)-semilattice embeddable, as a poset, into B,,(<2). Let X C P, let
R = (Ry)zex be a family of finite sets, and let « < w. There exists an Ng-lifter
(U,U) of A= PXp« such that U has cardinality Rs.
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Proof. Tt follows from [8], see also [2, Theorem 46.2], that (N2, 2,Rg) — m, so [6,
Proposition 5.2] implies (N, < Rg) ~» B,,,(<2), and so, from [6, Lemma 3.2] we
obtain (g, < Vo) ~» P. Tt follows from Lemma 8.9 that (Na, < Rg) ~» A. The
conclusion follows from Remark 8.8 together with [5, Lemma 3-5.5]. O

9. THE CONDENSATE LIFTING LEMMA FOR GAMPS

In this section we apply the Armature Lemma from [5] together with Lemma 7.8
to prove a special case of the Condensate Lifting Lemma for gamps.

To uses the condensate constructions, we need categories and functors that sat-
isfies the following conditions.

Definition 9.1. Let A and § be categories, let ®: A — 8§ be a functor. We
introduce the following statements:

(CLOS) A has all small directed colimits.

(PROD) Any two objects of A have a product in A.

(CONT) The functor ® preserves all small directed colimits.

Remark 9.2. Given a norm-covering X of a poset P and a category A that satisfies
both (CLOS) and (PROD), we can construct an object F'(X)® A which is a directed
colimit of finite products of objects in A, together with morphisms

X @A F(X)®A— Apg
for each x € Ids X.
Moreover if A is a class of algebras closed under finite products and directed
colimits, then 7X ® A is surjective, and card(F(X)® A) < card X + > pep Ap. For
more details about this construction, we refer the reader to [5, Chapter 2].

In the following theorem, we refer the reader to Definition 6.14 for the definition
of a partial lifting.

Theorem 9.3. Let V and W be varieties of algebras such that W has finite simi-
larity type, let (X, X) be an Ro-lifter of a poset P, let A= (Ap, fpq | p < qin P)
be a diagram in 'V such that Cong A, is finite for each p € P~, let B € W such
that Cone B = Con, (F(X) ® /Y) Then there exists a partial lifting B = (Bp:gp.q |
p < q in P) of Con, oA in W such that B, is finite for each p € P~ and By, is a
quotient of G(B) for each p € Max P.

Proof. Denote by 8 the category of all (V,0)-semilattices with (V,0)-homomor-
phisms. The category V satisfies (CLOS) and (PROD), so F(X)® A is well defined
(cf. [5, Section 3-1]). The functor Con, satisfies (CONT). Let x: Con. B —
Con.(F(X) ® ff) be an isomorphism and put pp = Con.(7X @ A) o x for each
x€X. AsTmi® Ais surjective and x is an isomorphism, it follows that pg is
ideal-induced. Notice that rng p, = Con, Ay, is finite.

Lemma 7.8 implies that there exists a diagram B = (B, gz y | <yin X7)
of finite subgamps of G(B) in W such that the following statements hold:

(1) pgz | By is ideal-induced for each ¢ € X ™.

(2) B, is strong, distance-generated through py, fgm, and congruence-tractable
through pg [Ew, for each ¢ € X ™.

(3) ga,y is the canonical embedding, for all z <y in X ™.
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(4) 9.y 18 strong and congruence-cuttable through p,, fgy, forallez < yin X~

We extend this diagram to an X-indexed diagram, with B, = G(B) and defining
g,y as the canonical embedding for each y € X — X~ and each x <y. Thus CoB
is an X-indexed diagram in the comma category 8 | Con. B, moreover C(B) = B,
is finite for each @ € X~. Therefore, it follows from the Armature Lemma [5] that

there exists an isotone section o: P < X such that the family (p,(,) [ By(p))pep is
a natural transformation from (C(Bg(y)), C(gs(p),0(q)) | P < ¢ in P) to Cong oA.

Put B = (Bo(p)»Go(p),o(q) | P < qin P) and I, = kerg py(p), for each p € P.

This defines an ideal I = (Ip)pep of B Moreover, as p,(p) [ Bo(p) is ideal-induced
for each p € P, these morphisms induce a natural equivalence (C oél) /T2 Con. oA
(cf. Lemma 3.13).

Denote by hy, q: Bo(p) /Iy — Bo(g)/1q the morphism induced by g, (,) (g It
follows from Proposition 6.5 that B, /1, is strong for each p € P, and it follows
from Proposition 6.7 that h, 4 is strong for all p < ¢ in P. Lemma 7.3 implies that
B, /1, is distance-generated and congruence-tractable for each p € P. From
Lemma 7.4 we obtain that h, , is congruence-cuttable for all p < ¢ in P.

Let p € P, let x: gg(p) — Conc B be the inclusion map. As B, is a subgamp
of G(B), (B, x) is a realization of B, ), thus it induces a realization (B/\/ I,, x')
where x': B,/1, — B/\/I satisfies x'(d/I,) = d/\/ I, (cf. Proposition 6.5). As
Po(p) [gg(p) is ideal-induced it is easy to check that x’ is surjective, hence it defines
an isomorphic realization.

Let p a maximal element of P. From B,,) = G(B) it follows that B,,)/I, is
a quotient of G(B).

Therefore B//fis a partial lifting of Con, oA in W. Moreover, if p € P~ then
B, ;) is finite, thus B;/Ip = B, ) /1, is finite. O

Remark 9.4. Use the notation of Theorem 9.3. A small modification of the proof
above shows that if W is a variety of lattices, then we can construct a lattice partial
lifting B of CongoA in 'W. Moreover, for any integer n > 2, if B is congruence
n-permutable then all B, can be chosen congruence n-permutable.

Corollary 9.5. Let 'V be a locally finite variety of algebras, let W be a variety of
algebras with finite similarity type. The following statements are equivalent:
(1) crit(V;'W) > Rg.
(2) Let T be a countable lower finite tree and let A be a T-indexed diagram of
finite algebras in V. Then Con. oA has a partial lifting in 'W.

(3) Let A be a w-indezed diagram of finite algebras in V. Then Con, oA has a
partial lifting in 'W.

Proof. Assume that (1) holds. Let T be a countable lower finite tree and let A be
a T-indexed diagram of finite algebras in V. It follows from [3, Corollary 4.7] that
there exists an Ny-lifter (X, X) of T' such that card X = Ry. Hence the following
inequalities hold:

card(F(X) ® A) < card X + Z A, <R Z N = No.
peT peT
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Thus, as crit(V; W) > RN, there exists B € W such that Con. B = Con, (F(X)@/D
It follows from Theorem 9.3 that there exists a partial lifting of Con, oA in W.

The implication (2) = (3) is immediate.

Assume that (3) holds and let A € V such that card Con. A < Xg. By replacing A
with one of its subalgebras we can assume that card A < Ng (see [3, Lemma 3.6]).
As V is locally finite, there exists an increasing sequence (Ag)k<, of finite subal-
gebras of A with union A. Denote by f;;: A; — A; the inclusion map, for all
i<j<w Put A= (Ai, fij |1 < j <w). Let B be a partial lifting of Con, oA
in W, let B be the directed colimit of B in Gamp(V). As C and Con. both
preserve directed colimits, the following isomorphisms hold:

C(B) = C(hLQB) = lim(C o B) ~ lim(Con, 0A) = Conclii)nff% Con, A.

Moreover, it follows from Lemma 6.17 that B is an algebra in ‘W, that is, there
exists B € W such that B = G(B), so Con, B = C(G(B)) = C(B) = Con. A.
Therefore crit(V; W) > V. O

A variety of algebras is congruence-proper if each algebra with a finite congruence
lattice is finite (cf. [5, Definition 4-8.1]).

The following theorem is similar to Theorem 9.3, if W is a congruence-proper
variety with a finite similarity type, then we no longer need partial lifting in the
statement. There is a similar theorem in [5, Theorem 4-9.2]. This new version
applies only to variety (and not quasi-variety), but the assumption that W is locally
finite is no longer need.

Theorem 9.6. Let 'V be a variety of algebras. Let W be a congruence-proper variety
of algebras with a finite similarity type. Let (X, X) be an Wo-lifter of a poset P.
Let A = (Ap, fo.g | p < qin P) be a diagram in V such that Con A, is finite for
each p € P=. Let B € W such that Con. B = Con, (F(X) ® /T) Then there exists
a lifting B of Cong oA in W such that B, is a quotient of B for each p € P.

Proof. We notice, as in the beginning of the proof of Theorem 9.3, that F'(X) @A is
well defined, we also uses the same notations. Let x: Con, B — Con,(F(X) ® ff)
be an isomorphism. Put p, = Conc(wf ® /T) ox for each x € X. As wf ® A is
surjective and x is an isomorphism, it follows that p, is ideal-induced.

Notice that rng p, = Con. Apg is finite. Hence Con. B/ kerg py = Con. Agy is
finite. As W is congruence-proper, it follows that B/ kerg p,, is finite.

Hence, the property A/ kerg pr = G(B)/kerg psz, in A a subgamp of G(B) is a
locally finite property for B. It follows from Lemma 7.8 and Remark 7.9 that there
exists a diagram B = (Bz,9gz,y | * <y in X7) of finite subgamps of G(B) in W,
as in the proof of Theorem 9.3, but that satisfies the additional condition:

(5) Bg/kergps = G(B)/ kerg pg, for all x € X~

We continue with the same argument that in the proof of Theorem 9.3. We obtain
B'/I a partial lifting of Con. oA. The following isomorphisms hold
B /1, = By / kero po(p) see proof of Theorem 9.3
= G(B)/kero Po(p) by (5)
= G(B/kerg po(p)) by Remark 6.9(6).
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Hence B, /I, is an algebra of V (cf. Remark 6.9(3)), for all p € P=, it is also true

for p € Max P. Tt follows from Remark 6.9(5) that B//f§ G o B, for a diagram of
algebras B. Hence:

ConcoB=CoGoB by Remark 6.9(1).
~CcoB'/T
>~ Cong oA as Bl/fis a partial lifting of Con, oA.
Hence B is a lifting of Con, oA. O

The following corollary is an immediate application of Theorem 9.6.

Corollary 9.7. Let V be a wvariety of algebras. Let W be a congruence-proper
variety of algebras with a finite similarity type. Let (X, X) be an No-lifter of a
poset P. Let A = (Ap, fo.q | p < qin P) be a diagram of finite algebras in V.
Assume that Con. oA has no lifting in W, then crit(V; W) < R + card X.

10. AN UNLIFTABLE DIAGRAM

FEach countable locally finite lattice has a congruence-permutable, congruence-
preserving extension (cf. [7]). This is not true for all locally finite lattices. Given a
non-distributive variety 'V of lattices, there is no congruence-permutable algebras A
such that Con, A = Con, Fy(Ng) (cf. [14]), hence Con, Fy(R2) has no congruence-
permutable, congruence-preserving extension. However it can be improved, the free
lattice Fy(X;) has no congruence-permutable, congruence-preserving extension (cf.
5)).

Denote by Ms the lattice of height two with three atoms (cf. Figure 4). Let V
be a variety of lattices such that M3 € V. There is no congruence n-permutable
lattices L such that Con. L = Fy(Rg), for each n > 2 (cf. [12]). In particular
Fy(Xs) has no congruence n-permutable, congruence-preserving extension, for each
n > 2. The aim of this section is to improve the cardinal to ;. We use gamps to
find a lattice of cardinal ¥; in M3 with no congruence n-permutable, congruence-
preserving extension, for each n > 2, this partially solve [5, Problem 7]. The proof
is based on a square-indexed diagram of lattices with no congruence n-permutable,
congruence-preserving extension.

Given a diagram of algebra fT, the diagrams B of gamps such that Py o B =
Pgaoff are similar to congruence-preserving extensions of A. Let A = (Ap, frq P <
g in P) be a diagram of algebras, let B = (Bpsgp.q | p < ¢ in P) be a congruence-
preserving extension of A, Then B, = (A, B,,0p,,Con. By) isagamp and g,, , =
(gp7q, Cong gp,q): By — By is a morphism of gamps, for all p < ¢ in P. It defines
B a diagram of gamps. Moreover, identifying Con. A, and Con. B), for all p € P,
we have Py o B= P,, o A

Fix n > 2 an integer. Given a diagram of algebras A with a congruence n-
permutable, congruence-preserving extension, there exists a diagram B of congru-
ence n-permutable gamps such that Pg o B = Py, o A. The converse might not
hold in general.

However the square-indexed diagram A of finite lattices with no congruence n-
permutable, congruence-preserving extension, mentioned above, satisfies a stronger
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property. There is no operational diagram B of lattice congruence n-permutable
gamps of lattices (cf. Definition 10.1) such that Py,0A = PgoB (cf. Lemma 10.6).
We conclude, in Theorem 10.7, that there is a condensate of f_l', of cardinal Ny,
with no congruence n-permutable, congruence-preserving extension.
For the purpose of this section, we need a stronger version of congruence n-
permutable gamp, specific to gamp of lattices.

Definition 10.1. A gamp A of lattices is lattice congruence n-permutable if for all
Z0,. .., Ty in A* there exist yo, ..., yn in A such that y; Ay; = y; Ay; = y; in A for
alli<j<mn,yo=xogANxp =2an Azoin A, y, = xgV T, =2, Vg in A, and:

O(Yres Yi1) < V(é(xi,xiﬂ) | i <mneven), forall k< n odd,

O(Yrs Yrr1) < \/(5(@;,3214_1) |i<nodd), forallk<n even.

A morphism f: A — B of gamps is operational if ¢(Z) is defined in B for all
(e ¥ and all ar(¢)-tuple Z in f(A) U B*.

Let P be a poset, a diagram A = (Ap, fpq | P < qin P) of gamps is operational
if f, , is operational for all p < ¢ in P.

Remark 10.2. In the context of Definition 10.1, the elements yi,...,y, does not
form a chain in general, as we might have y; ¢ A* for some i.

I this section we simply say that the gamp is congruence n-permutable instead of
lattice congruence n-permutable. The following lemma is immediate, the properties
given in Definition 10.1 go to quotients.

Lemma 10.3. Let A be a congruence n-permutable gamp of lattices, let I be an
ideal of A, then A/I is a congruence n-permutable gamp of lattices.

Let P be a poset, let A be an operational P-indexed diagram of algebras. Let I
be an ideal of A. The quotient A/f s operational.

The following lemma is similar to the Buttress Lemma (cf. [5]) and to Lemma 7.8,
this version is specific to the functor Pg.

Lemma 10.4. Let n > 2. Let 'V be a variety of lattices. Let P be a lower-finite
poset. Let (Ap)pep be a family of finite pregamps. Let B be a gamp in V, such
that B is a congruence n-permutable lattice. Let (mp)pep a family of ideal-induced
morphisms of pregamps where w,: PgyB — A, for all p € P. Then there exists a
diagram B = (Byp,9p.q | p < q in P) of finite subgamps of B such that the following
assertions hold.

(1) 7, [ Pa(B)) is an ideal-induced morphism of pregamps for all p € P.

(2) By, is strong and congruence n-permutable for all p € P.

(3) g, is the inclusion morphism, for all p < q in P.

(4) g, is operational for all p < q in P.

Proof. Let v € P, assume that we have already construct (By,g,, | p < ¢ <7)
that satisfies the required conditions.

As m, is ideal-induced, . (B*) = A,. Moreover A, is finite, hence there exists X
a finite partial subalgebra of B* such that m,.(X) = A, put B} = XUUP<T By, with
its structure of full partial subalgebra of B*. It follows that =,.(B}) C m.(B*) =
A, =7.(X) C 7. (B)), hence 7,.(B}) = A,. Moreover B} is finite.
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Let zg,x1,...,zy in B. As B is a congruence n-permutable lattice, there exist
Yo < -+ < yn in B such that yo = 29 A T, Yn = o V T, and

O(Yrs Yht1) < \/(5(@;,3214_1) | i <neven), forallk<mn odd,

O(Yrs Yr1) < V(é(xi,xiﬂ) | i <mnodd), forallk<n even.

Put Xuo.z1....on = {Y0s- -, Yn}. We consider the following finite set with its struc-
ture of full partial subalgebra of B

— *
- LOyL1yeeyTpy 3
B'r‘ U(XT Ty €T | 330,3?1, 7.]3," = BP)

U{x\/y|x,y6B}"UUB,,}

p<r

U{x/\y|x,y6B:UUBp}.
p<r

Put Y = {§(z,y) | x,y € B,}. As 7, is ideal-induced, it follows from Proposi-
tion 3.16 that there is a finite (V, 0)-subsemilattice B, of B such that Y C ET, and
i [ET is ideal-induced. Put B, = (B}, By, 0, ET), denote by g, .: B, — B, the
inclusion morphism for all p < r. Hence we obtain a diagram B = (Bp:gpq |0 <
g <r)of ﬁnite subgamps of B such that the following assertions hold.

(1) 7, [ Pg(B)) is an ideal-induced morphism of pregamps for all p <r.

(2) By is strong and congruence n-permutable for all p < r.

(3) g,,4 is the inclusion morphism, for all p < g <r.

(4) g, is operational for all p < ¢ <.
The conclusion follows by induction. O

We apply Lemma 10.4 and the Armature Lemma (cf. [5]) to obtain a Condensate
Lifting Lemma. Given a diagram A of finite lattices and a congruence-preserving,
congruence n-permutable extension of a condensate of ff, we obtain a “congruence-
preserving, congruence n-permutable extension” of A.

Lemma 10.5. Let V be a variety of lattices. Let (X, X) be a Ng-lifter of a poset P,
let A = (Ap, fp.q) be a diagram of V such that Con, A, is finite for allp € P=. Let B
be a congruence n-permutable lattice. If B is a congruence-preserving extension of
FX)® /T, then there exists an operational diagram B of congruence n-permutable
gamps such that Pg o B Py, o0 A.

Proof. As in the proof of Theorem 9.3, F(X) ® A is well defined. Denote by § the
category of pregamps of lattices. The functor Pg,: V — 8 satisfies (CONT), see
Remark 5.7. Put B* = F(X) ® fT, as B is a congruence-preserving extension of
B*, we can identify Con, B* with Con. B. Put B = (B*, B,0p, Con. B), hence
Py (B) = Py, (B*). Put mp = Pgy(na @ A): P, (B) — Pg.(A) forallx € X. It
follows from Lemma 10.4, that there exists a diagram (Bg, g, , |z <y in X7) of
finite subgamps of B such that the following assertions hold.

(1) wg | Pgi(Bg) is an ideal-induced morphism of pregamps for all @ € X~
(2) B, is strong and congruence n-permutable for all z € X ™.
(3) g4 is the inclusion morphism, for all x <y in X~
4) g

4) g, is operational for all x <y in X~
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We complete the diagram with B, = B and g, , the inclusion morphism for all
ye X — X7, and z < y. It follows from the Armature Lemma (cf. [5, Lemma 3-
2.2]) that there exists o: P — X such that do(p) = p for all p € P and (m,(, |
Py (B,)))pep is_’a natural transformation from (Pg (B ), Pyl (gg(p)’g(q)) |p <
¢ in P) to Py, 0 A.

Put p, = mo(p) | Pa(Bo(p)), put I, = kerg p, for all p € P. Put I= (Ip)pep,
it is an ideal of (Bo(p), 9o (p),0(q) | P < ¢ in P). Put C = (B, /Ip, Go(p),0(q) /1 |
p < ¢ in P). Notice that C is an operational diagram of congruence n-permutable
gamps.

Denote x,,: Pg(Bs(p))/Ip — Pga(Ap) the morphism induced by p,. It follows
from Lemma 5.28 that x, is an isomorphism, for all p € P. Hence, from Proposi-
tion 5.26 and Remark 6.13, we obtain that ¥ = (Xp)pepl Py o C — P, o Ais a
natural equivalence. (I

In the following lemma we construct a square-indexed diagram of lattices with
no congruence n-permutable, congruence-preserving extension.

Lemma 10.6. Let n > 2. Let K be a nontrivial, finite, congruence (n + 1)-
permutable lattice, let x1,x2,x3 in K such that x1 Axo =0 and x3Vas = x5V =
1. There exists a diagram A of finite congruence (n + 1)-permutable lattices in
Varo’l(K) indexed by a square, such that Pg, o A % Py o B for any operational
square B of congruence n-permutable gamps of lattices.

Proof. Put Xog = {0,23,1}, put X1 = {0,271 A x3,21,23,1}, put Xo = {0,252 A
x3,T2,23,1}, and X3 = K. Notice that X, k < 4, are all congruence (n + 1)-
permutable sublattices of K.

T3 Tk

T3 N\ T

0
FIGURE 1. The lattice Xy, for k € {1,2}

We denote by h;: Xo — X; and h}: X; — X3 the inclusion maps, for i = 1, 2.
Denote by X the square on the right hand side of Figure 2.
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Claim. Let B be a square of operational gamps of lattices (as in Figure 3), let
¢: PgaOX — PgIOB be a natural equivalence. Lety € By such that 6, (£0(0),y) <
0B, (§0(x3),60(1)), y Aéo(1) =y, and yV & (0) =y in By, then y = &(0).
Proof of Claim. We can assume that g1, g2, g7, and g} are inclusion maps. We can
assume that Pg, o X = Py o B and & is the identity. We denote Jj, instead of 05,
for all k € {0,1,2,3}, notice that d(u,v) is a congruence of X}, for all u,v € By,
moreover if u,v € X} = Bj then 0x(u,v) = Ox,(u,v). Let y € By such that
60(0,y) € do(23,1), yA1l=yand y VO =y in Bo.
Let k € {1,2}. As g,, is operational, y Azy, is defined in Bj. Moreover 0Axy, = 0,
hence 95(0,y A z1) C 6x(0,y). Therefore the following containments hold:
ok (Y, y A k) C 0k (y,0) V Or(0,y A xg) C 61(0,y) C p(23,1) = Ox, (x3,1). (10.1)
Moreover, as y A 1 = y, the following containment holds
Oy, y Nag) = 0k(y AL,y Axy) C o (1, ) = Ox, (1, 1) (10.2)
However Ox, (1,z;) N Ox, (x3,1) = 0x, (see Figure 1), thus it follows from (10.1)
and (10.2) that dx(y,y A z) = Ox,, hence the following equality holds
y=1y Az, foreachke {1,2}.
Therefore y = (y A x1) Az in Bs, moreover 1 A z2 = 0, hence as B is operational
Yy A (z1 A x2) is defined in Bz, thus y AO =y A (z1 Az2) = (y Ax1) Axe = .

Moreover as y V 0 = y, it follows that 0 = (y V0) A0 =y A0 = y (all elements
are defined in Bs), hence y = 0. O Claim.

Let C be a (n + 1)-element chain. Set T'= {¢t | t: C'— X is order preserving}.
Put Ag = C, put A1 = X], put Ay = X7T put A3 = XI = KT. We consider the
following morphisms:

fir Ao — A;
x— (t(x))ter, fori=1,2.

We denote by f/: A; — As the inclusion maps, for i = 1,2. We denote by A the
square in the left hand side of Figure 2.

Az X3
N N
Aq A X1 Xo
N N
A() XO

FIGURE 2. Two squares in Var’!(K)

Given t € T, denote wf = t and 7i: Ay — Xk, (ap)per — a: the canonical
projection, for all k& € {1,2,3}. It defines a natural transformation @ from A to
X. We denote by 7, = Pg,(nk) = (t, Con. 7t), for all k € {0,1,2,3}.



CRITICAL POINTS 45

Assume that there exists an operational square B , as in Figure 3, of congruence
n-permutable gamps of lattices, and a natural equivalence Py, 0 A — Py o0 B. We

can assume that Py, 0 A= Pgo B. Put 0 = dB,, the distance d 4, is a restriction
of oy, for all k € {0,1,2,3}.

B;
S
B, B,
A
By

FIGURE 3. A square in the category Gamp(L)

Let ap < a1 < --- < a, be the elements of C = Ay = B§. As By is congruence
n-permutable, there exist by, ..., b, in By such that b; Abj = b; Ab; = b; in By for
allt < j<mn,by=apAa, =apin By, b, =ap V a, = a, in By, and:

00(bg, br11) < \/(50(%, ai+1) | i < neven), forall k <n odd, (10.3)
00 (bg, bit1) < \/(50(%, ai+1) | i <nodd), forall k<n even. (10.4)
In particular the following inequality holds
50(bk, bk+1) < 50(&0, ak) V 50(ak+1, an), for all k£ < n. (10.5)
As b, = ay, an immediate consequence of (10.5) is do(bp—1,an) < do(ag, an-1).
Assume that do(an—2,bn—1) < do(ag, an—2), it follows that
do(ag, an) < do(ag, an—2) V do(@n—2,bn—1) V 00(bn—1,an) < do(ag, an—1)
That is © 4, (ag, an) < ©4,(ap, an—1) a contradiction, as Ay is the chain ap < -+ <
ap,. It follows that dp(an—2,bn—-1) £ do(ag, an—2).
Take 7 < n minimal such that the following inequality hold
50((Li, bi+1) ﬁ 50(&0, ai). (106)
If i = 0, then a9 = by = b;, hence dp(ap,b;) < do(ap,a;). If ¢ > 0, then
it follows from the minimality of i that dg(a;—1,b;) < do(ao,ai—1) < do(ao,a;),
thus do(ap,b;) < do(ao,ai—1) V dp(ai—1,b;) < do(ao,a;). Therefore the following
inequality holds
do(ao, b;) < do(ao, a;). (10.7)
Assume that 09(b;,b;41) < do(ao, a;), this implies with (10.7) the following in-
equality
do(ai, biy1) < do(ai,ao) V do(ag, b;) V 6o(bs, bit1) = do(ao, a;).
Which contradict (10.6). Therefore the following statement holds
30(bi, biv1) £ do(ao, a;). (10.8)

As Con Ay is a boolean lattice with atoms dg(ag, ags1) for k < n, it follows from
(10.8) that there is j < n such that

do(aj, aj+1) < 0o(bi,bi1) and do(aj, aj+1) £ do(ao, ai), (10.9)
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As do(aj,aj41) £ do(ao,a;), j > i. It follows from (10.3), (10.4), and (10.9) that ¢
and j are of distinct parities, therefore j > i.
Put

t: A() - {O,IE?,, ].}

0 ifk<i,
ap — szx3 fi<k<j, forallk<n.
1 ifj <k,

As i < j < n the map t is surjective, thus ¢t € T. Put I; = kergw!, for all
i €{0,1,2,3}. Denote by X: Pga0A/I = PgoB — X the natural transformation
induced by 7. As T = Pg,(7) is ideal-induced, it follows from Lemma 5.28 that x

—

is a natural equivalence. Put E = xil. Notice that the following equalities hold

00(a0, bit1) < do(ao,b;) V do(bs, bit1)
S 50(&0, ai) V 50(&0, ai) V 50(a7;+1, an) by (107) and (105)
= do(ag,a;) V do(@it1,an)

Moreover £(0) = ao/lo = ai/lo, &o(23) = aiy1/lo and & (1) = an/lo, thus
0B, /1,(£0(0), bit1/I0) < 0By 1,(0(23),§0(1)). As biv1/IoNEo(1) = (bir1Aan)/Io =
bi+1/10 and bi+1/10 vV 50(0) = (b7;+1 vV a())/[o = bi+1/10. It follows from the Claim
that br1/Io = &(0) = ao/lo, that is dg(ag,bi+1) € Ip. Therefore the following
inequality holds:

do(ao, bi+1) < do(ao, ai) V do(ait1,a;) V do(ajt1,an) (10.10)
Hence we obtain
50(aj, Clj+1) S (50 bi, bi+1) by (109)

(
< do(bisao) V do(ao, bit1)
< 50(&0, ai) V 50(ai+1, aj) vV 50(CLJ‘+1, an) by (107) and (1010)
< do(ag,a;j) VvV do(ajt1,an).

A contradiction, as Ay is the chain ag < a1 < -+ < ay. O

Theorem 10.7. Let n > 2. Let V be a variety of lattices, such that Ms € V,
L, €V, L3 eV, Ly €V, Lyd € vV, or L% € V. There exists a bounded lattice
L € V such that L is congruence (n + 1)-permutable, card L = Ny, and L has
no congruence n-permutable, congruence-preserving extension in the variety of all
lattices.

Proof. Fix (X, X)) an Rg-lifter of the square such that card X = ¥ (cf. Lemma 8.5).
Up to changin V to its dual, we can assume that Ms € V, Ly € V, Lg € V, or
Ly €V. Let K one of those lattices such that K € V, let x1, z2, x5 as in Figure 4.
The conditions of Lemma 10.6 are satisfied. Denote A the diagram constructed in
Lemma 10.6.

Put L = F(X)® A € Var®!(K) C V (cf. Remark 9.2). Notice L is a directed
colimit of finite product of alebras in A and all algebras in A are congruence (n+1)-
permutable, thus L is congruence (n + 1)-permutable. As card X = N; and each
lattice in the diagram Ais finite, card L = Xy. Moreover L cannot have a congruence
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1 1
X1 €2
T

0 0

1
1
zs3
Z3
T
T

0 0

FIGURE 4. The lattices M3, Lo, L3, Ly.

n-permutable, congruence-preserving extension, as the conclusions of Lemma 10.5
and Lemma 10.6 contradict each other. O

The following corollary is an immediate consequence of Theorem 10.7.

Corollary 10.8. Let 'V be a variety of lattices, such that Ms € V, Lo € V, L3 €V,
LieV, LY €V, or Lyd € V. The free bounded lattice on Ry generators of V has
no congruence n-permutable, congruence-preserving extension in the variety of all
lattices, for each n > 2.
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