
FINITE ABELIAN ALGEBRAS ARE DUALIZABLE

PIERRE GILLIBERT

Abstract. A finite algebra A = 〈A;F〉 is dualizable if there exists a discrete

topological relational structure A = 〈A;G; T〉, compatible with F, such that
the canonical evaluation map eB : B → Hom(Hom(B,A),A) is an isomor-

phism for every B in the quasivariety generated by A. Here, eB is defined by

eB(x)(f) = f(x) for all x ∈ B and all f ∈ Hom(B,A).
We prove that, given a finite congruence-modular Abelian algebra A, the

set of all relations compatible with A, up to a certain arity, entails the whole

set of all relations compatible with A. By using a classical compactness result,
we infer that A is dualizable. Moreover we can choose a dualizing alter-ego

with only relations of arity ≤ 1 + α3, where α is the largest exponent of a

prime in the prime decomposition of |A|.

1. Introduction

A (finite) structure A is an alter-ego of an algebra A, if both have the same
underlying set A and each operation, each relation and each partial operation of A
is compatible with all operations of A. We also add the discrete topology to A.

Under this assumption, given B ∈ QVarA (that is, B is a subalgebra of a power
of A), the set Hom(B,A) of all homomorphisms B → A is a closed subset of AB
and is stable under each operation of A. We denote the corresponding substructure
of AB by B∗.

Similarly, given U a closed substructure of AX (for some nonempty set X), the

set Hom(U,A) of all continuous homomorphisms U→ A is a subalgebra of AU . We
denote the corresponding subalgebra of AB by U+.

The evaluation map is the map eB : B → B∗+ defined by eB(x)(f) = f(x) for
all x ∈ B and all f ∈ Hom(B,A).

The evaluation map is always an embedding of algebras. The alter-ego A dual-
izes A if eB is an isomorphism for each B ∈ QVarA. An algebra A is dualizable
if there exists an alter-ego A that dualizes A.

Independently Zádori in [13], and Davey, Heindorf, and McKenzie in [4] prove the
following characterization of dualizable algebras in congruence-distributive varieties
(see also [3, 10.2.2]).

Theorem (Zádori, Davey, Heindorf, and McKenzie). A finite algebra, generating a
congruence-distributive variety, is dualizable if and only if it has a near-unanimity
term.

Moreover Maróti proves in [10] that the existence of a near-unanimity term in a
finitely generated variety is decidable. He concludes that the dualizibility of finite
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algebras generating congruence-distributive varieties is decidable. The equivalent
problem for finite algebras generating congruence-modular varieties is still open.
However several results are known.

Abelian groups are dualizable (finite discrete case of Pontryagin duality). Quack-
enbush and Szabó prove in [12] that non-Abelian nilpotent groups are inherently
non-dualizable (any group containing a non-Abelian nilpotent subgroup is not du-
alizable). Nickodemus finally proved in [11] that groups with only Abelian Sylow
subgroups are dualizable. This give the following characterization of dualizable
groups.

Theorem (Nickodemus, Quackenbush, and Szabó). A finite group is dualizable if
and only if all its Sylow subgroups are Abelian.

Bentz and Mayr prove in [2] that supernilpotent non-Abelian algebras are in-
herently non-dualizable. Bentz and Mayr also gave an example of a nilpotent,
non-supernilpotent, non-Abelian, dualizable algebra.

A natural question, and the next step in the characterization of dualizable al-
gebras in congruence-modular varieties, is the case of Abelian algebras. Several
example are already known.

Davey and Quackenbush prove in [5] that finite simple Abelian algebras are
strongly dualizable. A finite module, with an additional constant operation for
each element, is dualizable (unpublished result by Bentz and Mayr).

In this paper we extend both results by proving that every finite Abelian alge-
bra, generating a congruence-modular variety, is dualizable. This solves a problem
asked by Bentz and Mayr [2, Problem 6.1]. This also characterize supernilpotent
dualizable algebras (exactly the Abelian algebras).

Note that Kearnes and Szendrei have recently and independently proved in [9],
among other things, that Abelian algebras are dualizable. However the proof of this
paper yields a better bound on the arities of relations in the dualizing structure.

Moreover the factorizing lemma (Lemma 5.7) is a key for further generalization.
The author, with Bentz and Sequeira in [1], extend the result to prove that finite
Abelian algebras are strongly dualizable.

2. Basic concept

We refer to [3] for basic definitions and results on duality theory.
Given a set A, we denote by |A| the cardinality of A, and by P(A) the set of all

subsets of A. Given a map f : A → B we set graph f = {(a, f(a)) | a ∈ A}. Note
that if f is an operation on A of arity n, then graph f is a relation of arity n+ 1.

Let F be a set of operations and relations over a set A. We say that F entails
an operation f (resp., a relation R), if for each integer n > 0, each map p : An → A
compatible with each element of F is also compatible with f (resp. R). Let G be a
set of operations and relations. We say that F entails G if F entails each relations
and each operations in G.

In this paper we only use the following classical entailment results.

Lemma 2.1. Let A be a set.

(1) Let (Ri)i∈I be a family of k-ary relations on A. Then {Ri | i ∈ I} entails⋂
i∈I Ri.

(2) Let F be a family of operations on A. Let R be a k-ary relation on A and
let p1, . . . , pk : An → A be terms in F. We consider the n-ary relation on
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A defined by

S = {~x ∈ An | (p1(~x), p2(~x), . . . , pk(~x)) ∈ R} .
Then {R} ∪ F entails S.

(3) Let R be an n-ary relation. Set S = {(x1, . . . , xn, xn) | (x1, . . . , xn) ∈ R}.
Then {S} entails R.

(4) Let f : An → A then {graph f} entails f .

We also use the classical brute-force and compactness argument summarized
here.

Theorem 2.2. Let A be a finite algebra. Let F be a finite set of operations and
relations compatible with A. Assume that F entails each relation compatible with A.
Then 〈A;F 〉 dualizes A.

We only consider Abelian algebras generating congruence-modular varieties.

Definition 2.3. A term of an algebra A is affine if there is an Abelian group
〈A; +,−, 0〉. Such that

(1) t(x, y, z) = x− y + z for all x, y, z ∈ A.
(2) t is compatible with all terms of A. That is, f(~x−~y+~z) = f(~x)−f(~y)+f(~z)

for all n-ary terms f of A and all ~x, ~y, ~z in An.

An algebra is affine if it has an affine term.

Remark 2.4. The group operations +, − and the constant 0 are not in general
terms of A. These operations might not be compatible with operations of A, and
might not be compatible with morphisms.

The Abelian group yielding an affine structure is not unique. If c is any element
of A then we can assume that c is the neutral element of +. In fact (x, y) 7→
x+c y = t(x, c, y) is an Abelian group operation (cf. [6, Lemma 5.6]). However the
term map, induced by t, is unique.

Lemma 2.5. Let t(x, y, z) be an affine term. Let u1, . . . , un be integers such that∑n
k=1 uk = 1, then

∑n
k=1 ukxk is a term in t. Conversely any term in t is equivalent

to a term of this form.

The following characterization of Abelian algebras in congruence-modular vari-
eties is due to Herrmann [7], a complete proof is given in [6, Corollary 5.9].

Theorem 2.6 (Herrmann). The Abelian algebras generating congruence-modular
varieties are the affine algebras.

In the sequel of the paper, whenever we have an congruence-modular variety of
Abelian algebras, we fix a term t giving each algebra an affine structure. We also
implicitly fix an Abelian group operation + for each considered Abelian algebra
(note that we only consider Abelian algebras in congruence-modular varieties).

3. Congruences induced by subalgebras

In this section, we construct a correspondence between subalgebras of an Abelian
algebra, and some of its congruences.

Most results are generalizations of the corresponding result for Abelian groups.
As there is no natural origin/zero element in an Abelian algebra the formulations
and proofs are a little different.
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We denote by SubA the set of all underlying set of (nonempty) subalgebras
of A. Given B ∈ SubA, we denote by B the corresponding subalgebra of A.

Definition 3.1. Let A be an Abelian algebra. Let B ∈ SubA. The congruence
generated by B, denoted by ΘB , is the smallest congruence of A which identifies
all pairs of elements in B.

Remark 3.2. Some congruences of A might not be of the form ΘB with B ∈ SubA.
For example, if A has at least two different constant operations, then the identity
congruence of A cannot be written as ΘB .

We might have ΘB = ΘC with B 6= C in SubA. For example, if the only
operation of A is t, and A has a nontrivial subalgebra B, then taking c ∈ A\B, we
can see that C = c+B = {c+ b | b ∈ B} ∈ SubA and B 6= C, however ΘB = ΘC .

In the following lemma, we know that there always exists such a term t. The
equation (3.1) and (3.2) could be taken for definition of ΘB . In particular, we see
that it does not depend on the choice of t.

Lemma 3.3. Let A be an Abelian algebra. Let t be an affine term of A. Let
B ∈ SubA. The following equalities hold

ΘB = {(x, y) ∈ A | ∀b ∈ B , t(x, y, b) ∈ B} (3.1)

= {(x, y) ∈ A | ∃b ∈ B , t(x, y, b) ∈ B} . (3.2)

Proof. We fix an Abelian group structure on A such that t(x, y, z) = x− y + z, for
all x, y, z ∈ A. We set:

Θ′B = {(x, y) ∈ A | ∀b ∈ B , t(x, y, b) ∈ B} , (3.3)

Θ′′B = {(x, y) ∈ A | ∃b ∈ B , t(x, y, b) ∈ B} . (3.4)

Let (x, y) ∈ Θ′′B . Let b′ ∈ B such that t(x, y, b′) ∈ B. Let b ∈ B. As B is stable
under t, it follows that t(t(x, y, b′), b′, b) ∈ B, however:

t(t(x, y, b′), b′, b) = x− y + b′ − b′ + b = x− y + b = t(x, y, b) .

So t(x, y, b) ∈ B for all b ∈ B, that is, (x, y) ∈ Θ′B . Hence Θ′′B ⊆ Θ′B . The other
containment follows from the fact that B is not empty.

We now prove that Θ′B is a congruence of A. Let x ∈ A, let b ∈ B, then
t(x, x, b) = b ∈ B, therefore (x, x) ∈ Θ′B .

Let (x, y) ∈ Θ′B . Let b ∈ B. Set b′ = t(x, y, b). Then b′ ∈ B, moreover the
following equalities hold

t(y, x, b′) = t(y, x, t(x, y, b)) = y − x+ x− y + b = b. (3.5)

As b ∈ B, it follows that (y, x) ∈ Θ′B .
Let x, y, z in A such that (x, y) ∈ Θ′B and (y, z) ∈ Θ′B . Let b ∈ B, then

t(x, y, b) ∈ B and t(y, z, b) ∈ B. Therefore t(t(x, y, b), b, t(y, z, b)) ∈ B. Moreover
the following equalities hold:

t(t(x, y, b), b, t(y, z, b)) = x− y + b− b+ y − z + b = x− z + b = t(x, z, b) . (3.6)

Therefore t(x, z, b) ∈ B, it follows that (x, z) ∈ Θ′B .
Let λ be an n-ary operation of A. Let x1, . . . , xn, y1, . . . , yn in A such that

(xi, yi) ∈ Θ′B for all 1 ≤ i ≤ n. Let b ∈ B, we have

t(xi, yi, b) ∈ B , for all 1 ≤ i ≤ n. (3.7)
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However t preserves λ and B is stable under λ, hence:

t(λ(x1, . . . , xn), λ(y1, . . . , xn), λ(b, . . . , b)) ∈ B . (3.8)

Moreover λ(b, . . . , b) ∈ B, therefore (λ(x1, . . . , xn), λ(y1, . . . , xn)) ∈ Θ′B .
Hence Θ′B is a congruence of A. Moreover, given x, y ∈ B, note that t(x, y, y) =

x ∈ B, hence (x, y) ∈ Θ′B . Therefore ΘB ⊆ Θ′B .
Let (x, y) ∈ Θ′B . Let b ∈ B, hence t(x, y, b) ∈ B. Therefore b and t(x, y, b) are

identified by ΘB , hence t(t(x, y, b), b, y) and t(b, b, y) are identified by ΘB . However
t(t(x, y, b), b, y) = x−y+b−b+y = x and t(b, b, y) = b−b+y = y, thus (x, y) ∈ ΘB .
Therefore ΘB = Θ′B . �

Given a congruence α of A, there might not exist a corresponding space B such
that α = ΘB , however if α ⊇ ΘB , we can assign a set C(α,B) = {x ∈ A | ∀b ∈
B , (x, b) ∈ α}.
Lemma 3.4. Let A be an Abelian algebra. Let B ∈ SubA. Let α be a congruence
of A containing ΘB. Then B ⊆ C(α,B) ∈ SubA, and:

C(α,B) = {x ∈ A | ∃b′ ∈ B , (x, b′) ∈ α} . (3.9)

Proof. Let x ∈ A and b′ ∈ B such that (x, b′) ∈ α. Let b ∈ B. Note that
(b′, b) ∈ ΘB ⊆ α. Hence (x, b) ∈ α for all b ∈ B, that is, x ∈ C(α,B). The other
containment is immediate as B is not empty.

Let b ∈ B. As (b, b) ∈ α, it follows that b ∈ C(α,B), therefore B ⊆ C(α,B).
Let λ be an n-ary operation of A. Let x1, . . . , xn in C(α,B). Let b ∈ B. Note

that (xi, b) ∈ α for all 1 ≤ i ≤ n, therefore (λ(x1, . . . , xn), λ(b, . . . , b)) ∈ α. However
λ(b, . . . , b) ∈ B, hence λ(x1, . . . , xn) ∈ C(α,B). �

Lemma 3.5. Let A be an Abelian algebra. Let B ∈ SubA. The following state-
ments hold:

(1) Let α ⊇ ΘB be a congruence of A. Then ΘC(α,B) = α.
(2) Let X ⊇ B in SubA. Then C(ΘX , B) = X

Proof. We fix a group operation + on A, such that t, defined by t(x, y, z) = x−y+z
is a term of A.

Let x, y in A. Let b ∈ B. Assume that (x, y) ∈ α, note that (y, y) ∈ α and
(b, b) ∈ α, hence, form the compatibility of α with t, it follows that (t(x, y, b), b) =
(t(x, y, b), t(y, y, b)) ∈ α. Conversely if (t(x, y, b), b) ∈ α, then

(x, y) = (t(t(x, y, b), b, y), t(b, b, y)) ∈ α .
This proves the following equivalence:

(x, y) ∈ α⇐⇒ (t(x, y, b), b) ∈ α . (3.10)

The following equivalences hold:

(x, y) ∈ ΘC(α,B) ⇐⇒ t(x, y, b) ∈ C(α,B) By Lemma 3.3.

⇐⇒ (t(x, y, b), b) ∈ α By Lemma 3.4.

⇐⇒ (x, y) ∈ α By (3.10).

So ΘC(α,B) = α, that is, (1) holds.
Fix X ∈ SubA such that X ⊇ B. Let x in A, let b ∈ B.

x ∈ C(ΘX , B)⇐⇒ (x, b) ∈ ΘX ⇐⇒ x = t(x, b, b) ∈ X .

That is, (2) holds. �
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Theorem 3.6. Let A be an Abelian algebra. Let B ∈ SubA. Then X 7→ ΘX and
α 7→ C(α,B) are mutually inverse isomorphisms of lattices between subalgebras
of A containing B and congruences of A containing ΘB.

Proof. Denote by S = {X ∈ SubA | X ⊇ B} the lattice of all subalgebras of A
containing B, and by C = {α ∈ ConA | α ⊇ ΘB} the lattice of all congruences
of A containing ΘB .

We can see from the definition, that if X ⊇ Y , then ΘX ⊇ ΘY . In particular
X 7→ ΘX is an isotone map from S to C.

Similarly if α ⊆ β then C(α,B) ⊆ C(β,B). The conclusion follows from
Lemma 3.5. �

It follows that a quotient of an Abelian algebra by a meet-irreducible subalgebra
is subdirectly irreducible. That is, the following statement holds.

Corollary 3.7. Let A be an Abelian algebra. Let B ∈ SubA. If B is a meet-
irreducible, then A/ΘB is subdirectly irreducible.

The following corollary expresses that a completely meet-irreducible subalgebra
of an Abelian algebra is a “kernel” of a morphism into a subdirectly irreducible
algebra.

Corollary 3.8. Let A be an Abelian algebra, let B ∈ SubA be completely meet-
irreducible. Then there exists a subdirectly irreducible algebra S in the variety
generated by A, a morphism of algebras f : A→ S and an element c ∈ S such that:

(1) B = {x ∈ A | f(x) = c}.
(2) c is preserved by all operations of S, equivalently {c} is the underlying set

of a subalgebra of S.

Proof. Set S = A/ΘB . Denote by f : A → S the canonical projection. By
Corollary 3.7 the algebra S is subdirectly irreducible. Let b ∈ B, note that
f(b) = b/ΘB = {x ∈ A | (x, b) ∈ ΘB} = C(ΘB , B) = B, we denote by c this
element of S. Hence {x ∈ A | f(x) = c} = B.

Moreover, given b ∈ B and λ an operation of A, we have λ(b, . . . , b) ∈ B, hence
λ(b, . . . , b)/ΘB = B = c, that is, λ(c, . . . , c) = c. �

4. Counting morphisms

Lemma 4.1. Let A and B be Abelian algebras in a congruence-modular variety.

Assume that |A| = pα1
1 pα2

2 . . . pαk

k and |B| = pβ1

1 p
β2

2 . . . pβk

k , where p1, . . . , pk are
distinct primes. Then the following statement holds

|Hom(A,B)| divides p
(α1+1)β1

1 p
(α2+1)β2

2 . . . p
(αk+1)βk

k .

Moreover, if A and B have a group structure then

|Hom(A,B)| divides pα1β1

1 pα2β2

2 . . . pαkβk

k .

Proof. Assume that A and B are Abelian groups. Given 1 ≤ i ≤ k, denote by Ai

the pi-Sylow subgroup of A. That is, Ai is the set of all element of A of order
a power of pi. Similarly denote by Bi the pi-Sylow subgroup of B. Note that

|Ai| = pαi
i and |Bi| = pβi

i . Let Fi be a generating set of Ai such that |Fi| = αi.
Given a ∈ Fi and f ∈ Hom(A,B), the element f(a) of B is of order a power of pi
hence f(a) ∈ Bi.
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Therefore the following map is well-defined:

ϕ : Hom(A,B)→ BF1
1 ×B

F2
2 × · · · ×B

Fk

k

f 7→ (f � F1, f � F2, . . . , f � Fk) .

As A is generated by F1 ∪ F2 ∪ · · · ∪ Fk, the map ϕ is injective. Moreover ϕ is
a morphism of groups. Therefore 〈Hom(A,B); +〉 is isomorphic to a subgroup

of BF1
1 × BF2

2 × · · · × BFk

k . So |Hom(A,B)| divides |BF1
1 × BF2

2 × · · · × BFk

k |.
Moreover the following equalities hold

|BF1
1 ×B

F2
2 × · · · ×B

Fk

k | = (pβ1

1 )|F1| × (pβ2

2 )|F2| × · · · × (pβk

k )|Fk|

= (pα1β1

1 )× (pα2β2

2 )× · · · × (pαkβk

k ) .

We now only assume that A and B are Abelian algebras. Note that Hom(A,B)

is the underlying set of a sub-algebra of 〈B; t〉A. Set H = Hom(A,B) and H =
〈H; t〉.

Pick a ∈ A. We can assume that the neutral element of the Abelian group
operation + on A, inducing the affine structure of A, is a. That is, x+y = t(x, a, y)
for all x, y ∈ A. Similarly, pick b ∈ B, we can assume that x+ y = t(x, b, y) for all
x, y ∈ B.

We consider K = Hom(〈A; +〉 , 〈B; +〉) and K = 〈K; t〉. That is, we only con-
sider the affine structure on the set of group morphisms 〈A; +〉 → 〈B; +〉.

Given f ∈ Hom(A,B), we consider ψ(f) : A → B, x 7→ f(x) − f(a). The
following equalities hold

ψ(f)(x+ y) = f(x+ y)− f(a)

= f(x− a+ y)− f(a)

= f(x)− f(a) + f(y)− f(a)

= ψ(f)(x) + ψ(f)(y) .

Hence ψ(f) is a morphism of groups, hence ψ ∈ K. Let f, g, h ∈ H. Let x ∈ A.
The following equalities hold

ψ(f − g + h)(x) = (f − g + h)(x)− t(f − g + h)(a)

= f(x)− g(x) + h(x)− (f(a)− g(a) + h(a))

= f(x)− f(a)− (g(x)− g(a)) + h(x)− h(a)

= ψ(f)(x)− ψ(g)(x) + ψ(h)(x) .

That is, ψ(t(f, g, h)) = ψ(f − g + h) = ψ(f) − ψ(g) + ψ(h) = t(ψ(f), ψ(g), ψ(h)).
Therefore ψ : H → K is a morphism. Moreover H → 〈B; t〉, f 7→ f(a) is a
morphism. Thus the following map defines a morphism

σ : H →K × 〈B; t〉
f 7→ (ψ(f), f(a)) .

Let f, g ∈ H such that σ(f) = σ(g). That is, f(a) = g(a) and ψ(f) = ψ(g).
Let x ∈ A, note that ψ(f)(x) = ψ(g)(x), hence f(x) − f(a) = g(x) − g(a), so
f(x) = g(x), hence f = g. Therefore σ is an embedding. Thus |H| divides |K ×
B|. Moreover from the group case |K| divides pα1β1

1 pα2β2

2 . . . pαkβk

k . Therefore |H|
divides pα1β1

1 pα2β2

2 . . . pαkβk

k pβ1

1 p
β2

2 . . . pβk

k . �
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Lemma 4.2. Let A be an Abelian group (resp., an Abelian algebra). Assume that
|A| = pα1

1 pα2
2 . . . pαk

k , where p1, . . . , pk are distinct primes. Then A has a family of
generators with max1≤i≤k(αi) elements (resp., 1 + max1≤i≤k(αi) elements).

Proof. Set N = max1≤i≤k(αi).
If A is an Abelian group. It follows from the fundamental theorem on finitely

generated Abelian groups that A is isomorphic to Zu1
× · · · × Zuq

, where 1 < u1 |
u2 | · · · | uq. Let i such that pi | u1, so pqi | u1 . . . uq = |A| = pα1

1 pα2
2 . . . pαk

k . Hence
q ≤ αi ≤ N . Therefore A has a family of generators with q ≤ N elements.

If A is an Abelian algebra. Denote by + an Abelian group operation on A,
yielding the affine structure of A. Denote by a0 the neutral element of +. Let
a1, . . . , aN be a generating family of 〈A; +〉. As x+ y = t(x, a0, y) for all x, y ∈ A,
it follows that a0, . . . , aN generate A. �

Kearnes gives in [8] an upper bound to subdirectly irreducible algebras in a
finitely generated, congruence-modular variety satisfying the congruence-extension
property, this result applies in particular for Abelian algebras. Indeed Kearnes
points that this case corresponds to modules.

Lemma 4.3 (Kearnes). Let A be a finite Abelian algebra, let S be a subdirectly
irreducible algebra in VarA. Then |S| divides |Hom(〈A; +〉 , 〈A; +〉)|.

As an immediate consequence of Kearnes result and of Lemma 4.1 we obtain the
following corollary.

Corollary 4.4. Let A be an Abelian algebra in a congruence-modular variety.
Assume that |A| = pα1

1 pα2
2 . . . pαk

k , where p1, . . . , pk are distinct primes. Let S be a

subdirectly irreducible algebra in VarA. Then |S| divides p
α2

1
1 p

α2
2

2 . . . p
α2

k

k .

5. Main

We want to find a finite set of compatible relations which entails the set of
all compatible relations. The following lemma expresses that we can restrict our
problem to completely meet-irreducible compatible relations.

Lemma 5.1. Let A be a finite Abelian algebra. Let n be a positive integer. Denote
by F the set of all n-ary completely meet-irreducible relations compatible with A.
Let R be an n-ary relation compatible with A. Then F entails R.

Proof. Let B be a subalgebra of An. Note that B is the intersection of all under-
lying sets of completely meet-irreducible subalgebras of An containing B. However
this set is finite (as A is finite), and is contained in F. We can conclude with
Lemma 2.1(1) that F entails R. �

As an immediate consequence of Theorem 2.2 and Lemma 5.1

Corollary 5.2. Let A be an algebra. Let R be a finite set of relations compatible
with A. If R entails each meet-irreducible subalgebras of An for each n ∈ N, then
〈A;R〉 dualizes A.

Notation 5.3. Let A and S be Abelian algebras, let k : A→ S be a morphism.

(1) Set Hk(A2,S) = {f : A2 → S | ∀x ∈ A , f(x, x) = k(x)}.
(2) Let f : A2 → S, let a ∈ A. We set fa : A→ S, x 7→ f(a, x).

We refer to Remark 2.4 for the various definitions of +.
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Lemma 5.4. Let A and S be Abelian algebras, let k : A→ S be a morphism. The
following statements hold:

(1) The set Hk(A2,S) is the underlying set of a subalgebra of
〈
Hom(A2,S); t

〉
.

(2) The map k : A2 → S, (x, y) 7→ k(y), belongs to Hk(A2,S).
(3) Pick a ∈ A. Then the following map

Ψ:
〈
Hk(A2,S); +k

〉
→
〈

Hom(〈A; +a〉 ,
〈
S; +k(a)

〉
); +k

〉
f 7→ fa ,

is an embedding of groups.

(4) Let j : A→ S. Denote j : A2 → S, (x, y) 7→ j(y). Then
〈
Hk(A2,S); +k

〉
is isomorphic to

〈
Hj(A

2,S); +j
〉

.

Proof. Let f, g, h ∈ Hk(A2,S). Let x ∈ A, the following equalities hold

t(f, g, h)(x, x) = t(f(x, x), g(x, x), h(x, x)) = t(k(x), k(x), k(x)) = k(x) .

Hence t(f, g, h) ∈ Hk(A2,S), that is, Hk(A2,S) is the underlying set of a subal-
gebra of

〈
Hom(A2,S); t

〉
. Therefore (1) holds.

Set k : A2 → S, (x, y) 7→ k(y). First note that k : A2 → S is a morphism.
Moreover, given x ∈ A, we have k(x, x) = k(x), hence k ∈ Hk(A2,S). That is, (2)
holds.

Pick a ∈ A. Note that f : A2 → S and A → S, x 7→ a, preserve t, therefore fa
preserves t, moreover fa(a) = f(a, a) = k(a), thus fa preserves the neutral element.
Therefore Ψ(f) = fa : 〈A; +a〉 →

〈
S; +k(a)

〉
is a morphism of groups.

Let f, g ∈ Hk(A2,S). Let x ∈ A. The following equalities hold

(f +k g)a(x) = (t(f, k, g))a(x) , by definition of +k.

= t(f, k, g)(a, x) , by definition of (t(f, k, g))a.

= t(f(a, x), k(a, x), g(a, x)) , by definition of t(f, k, g).

= t(fa(x), k(x), ga(x)) , by definition of k, fa, and ga.

= t(fa, k, ga)(x) , by definition of t(fa, k, ga).

= (fa +k ga)(x) , by definition of +k.

Therefore Ψ(f +k g) = Ψ(f) +k Ψ(g), so Ψ is a morphism of groups.
We now prove that the kernel of Ψ is reduced to {k}. Let f ∈ Hk(A2,S) such

that Ψ(f) = k, that is

f(a, x) = k(x) , for all x ∈ A. (5.1)

Therefore the following equalities hold

f(x, y) = f(t(a, a, x), t(y, x, x))

= t(f(a, y), f(a, x), f(x, x)) , as f compatible with t.

= t(k(y), k(x), k(x)) , by (5.1) and as f(x, x) = k(x).

= k(y)

= k(x, y)

So f = k. Therefore Ψ is an embedding. Hence (3) holds.
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Let j : A→ S. Set j : A2 → S, (x, y) 7→ j(y). We consider

Φ: Hk(A2,S)→ Hj(A
2,S)

f 7→ t(f, k, j) .

Given f ∈ Hk(A2,S), the map t(f, k, j) is a composition of morphisms, and so is
a morphism. Moreover, given x ∈ A, the following equalities hold

t(f, k, j)(x, x) = t(f(x, x), k(x, x), j(x, x)) = t(k(x), k(x), j(x)) = j(x) .

Therefore Φ(f) = t(f, k, j) belongs to Hj(A
2,S). Also note that t and constant

maps are all compatible with t, thus Φ is compatible with t. Moreover Φ(k) =

t(k, k, j) = j, that is, Φ maps the neutral element of +k to the neutral element of

+j . Therefore Φ:
〈
Hk(A2,S); +k

〉
→
〈
Hj(A

2,S); +j
〉

is a morphism of groups.

Similarly
〈
Hj(A

2,S); +j
〉
→
〈
Hk(A2,S); +k

〉
, f 7→ t(f, j, k) is a morphism,

which is the inverse of Φ. Thus (4) holds. �

Remark 5.5. From Lemma 5.4(4) we see that the group
〈
Hk(A2,S); +k

〉
does

not depend on the choice of k. This group is well-defined (up to isomorphism) if
there exists at least one morphism k : A → S, in this case we denote this group
H(A2,S).

The following corollary is a consequence of Lemma 5.4(3) and Lemma 4.2.

Corollary 5.6. Let A and S be Abelian algebras. Assume that |A| = pα1
1 . . . pαk

k

and |S| = pβ1

1 . . . pβk

k , where p1, . . . , pk are distinct primes. Then |H(A2,S)| divides

pα1β1

1 . . . pαkβk

k , in particular H(A2,S) has a generating family with max1≤i≤k(αiβi)
elements.

Morphisms of a large enough power of A to S can be factorized through a smaller
power, moreover the factorization is through a morphism that can be expressed
with t. Note that, if there is a morphism An → S, then H(A2,S) is well-defined.

Lemma 5.7. Let A and S be algebras in a congruence-modular variety of Abelian
algebras. Let N be positive integer such that H(A2,S) has a family of generators
with N elements. Let n ≥ 1 be an integer. Let f : An → S be a morphism. There
exist a morphism g : AN+1 → S and terms p1, . . . , pN+1 : An → A in t such that
f(~x) = g(p1(~x), p2(~x), . . . , pN+1(~x)), for all ~x ∈ An.

Proof. Let h1, . . . , hN be a family generating H(A2,S). Given 1 ≤ i ≤ n, we
consider the morphism fi defined by

fi : A
2 → S

(x, y) 7→ f(y, . . . , y, x, y, . . . , y) ,where x appears at position i.

We also define k : A→ S, x 7→ f(x, . . . , x), and k : A2 → S, (x, y) 7→ k(y).

We can assume that H(A2,S) =
〈
Hk(A2,S); +k

〉
. Note that fi(x, x) = k(x)

for all x ∈ A, so fi ∈ Hk(A2,S) for all 1 ≤ i ≤ n. Thus there are integers
ui1, . . . , u

i
N such that

fi =

N∑
j=1

uijhj , for all 1 ≤ i ≤ n.
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Note that the sum might not be a term in t. However k is the neutral element,
hence

fi =

N∑
j=1

(uijhj − uijk) + k . (5.2)

By Lemma 2.5, the sum in (5.2) is a term in t, therefore the following equality holds
for all x, y ∈ A and all 1 ≤ i ≤ n.

fi(x, y) =

N∑
j=1

(uijhj(x, y)− uijk(x, y)) + k(x, y) .

Note that k(x, y) = k(y) = fj(y, y) = hj(y, y). Therefore

fi(x, y)− fi(y, y) =

N∑
j=1

(uijhj(x, y)− uijhj(y, y)) . (5.3)

Given 1 ≤ i ≤ n, z ∈ A, and ~x ∈ An, the following equalities hold

f(~x)− (fi(xi, z)− fi(z, z)) = f(x1, . . . , xn)− f(z, . . . , z, xi, z, . . . , z) + f(z, . . . , z)

= f(x1, . . . , xi−1, z, xi+1, . . . , xn)

Inductively we deduce that

f(~x)−
n∑
i=1

(fi(xi, z)− fi(z, z)) = f(z, . . . , z) = k(z) .

In particular for z = x1 we obtain

f(~x) =

n∑
i=1

(fi(xi, x1)− fi(x1, x1)) + k(x1) , for all ~x ∈ An. (5.4)

Define pN+1 : An → A, ~x 7→ x1. Given 1 ≤ j ≤ N , we consider pj defined by

pj(x1, . . . , xn) =

n∑
i=1

(
uijxi − uijx1

)
+ x1 (5.5)

It follows from Lemma 2.5 that pj is a term in t, in particular pj is a morphism.
Given ~x ∈ An and z ∈ A, the following equalities hold

hj(pj(~x), z) = hj

(
n∑
i=1

(
uijxi − uijx1

)
+ x1, z

)

= hj

(
n∑
i=1

(
uijxi − uijx1

)
+ x1,

n∑
i=1

(
uijz − uijz

)
+ z

)

=

n∑
i=1

(
uijhj(xi, z)− uijhj(x1, z)

)
+ hj(x1, z)

Therefore the following equality holds

hj(pj(~x), z)− hj(x1, z) =

n∑
i=1

(
uijhj(xi, z)− uijhj(x1, z)

)
. (5.6)
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Define g by

g : AN ×A→ S

(y1, . . . , yN , z) 7→
N∑
j=1

(hj(yj , z)− hj(z, z)) + k(z) .

Note that g is a morphism. Denote by p : An → AN+1, ~x 7→ (p1(~x), . . . , pN+1(~x)).
The following equalities hold

g(p(~x)) = g(p1(~x), . . . , pN (~x), x1) , as pN+1(~x) = x1.

=

N∑
j=1

(
hj(pj(~x), x1)− hj(x1, x1)

)
+ k(x1) , by definition of g.

=

N∑
j=1

(
n∑
i=1

(
uijhj(xi, x1)− uijhj(x1, x1)

))
+ k(x1) , by (5.6).

=

n∑
i=1

 N∑
j=1

(uijhj(xi, x1)− uijhj(x1, x1))

+ k(x1) , permuting the sum.

=

n∑
i=1

(fi(xi, x1)− fi(x1, x1)) + k(x1) , by (5.3).

= f(x1, . . . , xn) , by (5.4).

That is, f(x1, . . . , xn) = g(p1(~x), p2(~x), . . . , pN+1(~x)). �

Lemma 5.8. Let A be an Abelian algebra. Let N be a positive integer such that, for
all subdirectly irreducible algebras S in VarA, the group H(A2,S) has a generating
family with N elements. We denote by Rn the set of n-ary relation compatible
with A. Then RN+1 ∪ {t} entails R =

⋃
n≥1 Rn.

Proof. Let n ≥ 1. Let R be a n-ary completely meet-irreducible compatible rela-
tion with A. That is, R is the underlying set of R a completely meet-irreducible
subalgebra of An.

Therefore it follows from Corollary 3.8 that there exist a subdirectly irreducible
algebra S ∈ VarA, a morphism of algebras f : An → S, and an element c ∈ S
such that {c} is the underlying set of a subalgebra of S, and

R = f−1({c}) = {~x ∈ An+1 | f(~x) = c} (5.7)

From Lemma 5.7 there is a morphism g : AN → S and terms p1, . . . , pN+1 : An →
A in t such that

f(~x) = g(p1(~x), p2(~x), . . . , pN+1(~x)) , for all ~x ∈ An+1. (5.8)

Set B = g−1({c}), as g : An → S is a morphism and {c} is the underlying set of
a subalgebra of S, it follows that B is an n-ary relation compatible with A, hence
B ∈ Fn.

R = {~x ∈ An | f(~x) = c} , by (5.7).

= {~x ∈ An | g(p1(~x), . . . , pN+1(~x)) = c} , by (5.8).

= {~x ∈ An | (p1(~x), . . . , pN+1(~x)) ∈ B} , by definition of B.
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As p1, . . . , pn are terms in t, it follows from Lemma 2.1(2) that {B, t} entails R,
and so RN+1 ∪ {t} entails R.

Therefore RN+1 ∪ {t} entails the set of all completely meet-irreducible relation
compatible with A. It follows from Lemma 5.1 that RN+1 ∪ {t} entails R. �

Theorem 5.9. Let A be a finite Abelian algebra in a congruence-modular variety.
Assume that |A| = pα1

1 pα2
2 . . . pαk

k , where p1, . . . , pk are distinct primes. Set N =
max(4, 1 + max1≤i≤k(α3

i )). Denote by F the set of all N -ary relations compatible
with A. Then 〈A;F〉 dualizes A.

Proof. Denote by V the variety generated by A. Let S be a subdirectly irreducible

algebra in V. It follows from Corollary 4.4 that |S| divides p
α2

1
1 . . . p

α2
k

k . Therefore

by Corollary 5.6 H(A2,S) has a generating family of size max1≤i≤k(α3
i ). Hence

by Lemma 5.8, it follows that F ∪ {t} entails all relations compatible with A.
Note that graph t is a relation of arity 4, hence by Lemma 2.1(3) F entails graph t.

It follows from Lemma 2.1(4) that F entails t. So F entails all relations compatible
with A. Therefore it follows from Theorem 2.2 that 〈A;F〉 dualizes A. �
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